
Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 51 | P a g e

Comparing and Evaluating the Performance of Inter

Process Communication Models in Linux Environment
Ms. S.Krishnaveni and Ms. D.Ruby,

1,2
Assistant Professor (SS),

1,2
Department of Computer Science and Applications(M.C.A), Periyar Maniammai University,Vallam, TamilNadu, India

Abstract: In the software scenario, UNIX plays a vital role in

implementing portable software architecture. Many different

applications are based on UNIX platform. The performance

evaluation of communication protocol is required to compare the

feasibility. In this paper, we discuss the performance evaluation

of various Interprocess Communication (IPC) mechanisms such

as pipe, messages queue, streaming and datagram socket. The

different IPC mechanisms are analyzed by comparing various

sizes of data with a program simulating the messages across the

network. Results were obtained for various sizes of data with

Linux 2.2.5-15, FreeBSD 4.1, and FreeBSD 4.2.

To evaluate and compare various IPC methods, the

source code for IPC was written in UNIX. All mechanisms are

examined and evaluated for performance attributes such as

memory, transfer rate, buffer sizes, data transfer methods and

code complexity. The result shows that the Inter process

communication procedures written in Linux 2.2.5-15 exhibited

the best performance. Comparison of different mechanism shows

that the streaming socket performs well. Various source code

written to simulate the mechanism in different platform and its

performance evaluation facilitate the full understanding of IPC at

the source code level.

I. INTRODUCTION

The Unix operating system plays a prominent role in multi user

platform. The functions and principles of operating system allow

the user to run several processes simultaneously and share

multiple resources such as power of CPU, memory, and other

resources. Any none-trivial system developed on Unix systems

will split the task into several subtask/sub processes and runs the

processes simultaneously. The method of creating multi threads,

starts, stop, communicate with each processes and synchronize

them are built in the UNIX.

II. WHAT IS A PROCESS ?

A process can be defined as an entity that runs a small

executable program. Each process have its unique process

Identification number, execution stack, memory pages or blocks,

and file descriptors table.

A process is a task of executing a small piece of code. A

program may have a several processes executing simultaneously

at the same time. For example, there is normally one copy of the

'tcsh' shell on the system, but for each separate user connections,

there may be many „tcsh‟ processes running. In this multi

processes environment, the communication between different

processes is exists, it is called inter process communication. In

an IPC environment, several processes will try to execute the

same piece of code, or will try to utilize the same resources.

This situation of accessing a same resource by multiple processes

at the same time is called 'Re-entrancy'.

Re-entrancy

The status of re-entrancy is defined as that a single process calls

itself and execute the same code repeatedly. The concept of re-

entrancy is also defined as that many processes try to execute the

same piece of code in parallel. For instance, in a recursive

method, the process executes the code defined in a function and

the control of execution transferred to the same function again,

ie. it calls the same code of execution again. During the function

calls, the processes save the status information in a local

variable.

In a multi-process environment, each process has a separate data

section. So variables used in a process do not produce conflict

among them. The distinct image of global variable of same

program is available for two processes. Let us assume process A

that runs program P and process B that runs the same program P,

have distinct copies of the global variable 'i' of that program.

The most important problem in interprocess communication is

managing simultaneous updation. For instance, consider the

code, which “opens a file and write data on to it”. In the

interprocess communication, if two processes try to run the same

updation code , there will be a conflict occurs that which code is

to be executed and which data is to be reflected in the file. Such

situation can be managed by the “locking” mechanism, so that at

a time one process is allowed to open a file and write the data

into the file.

III. PROCESS CREATION

The fork() System Call

The fork() system call is a fundamental method to create a new

process. It is also a very unique system call, since it returns

twice(!) to the caller.

fork()

The fork() system call is used to split the main processes into

two processes known as parent and child. When a fork() call is

executed, the memory pages used by the original process get

duplicated, so both parent and child process have the same

structure of process. The differences of parent and child image

occur at the call returns. The return value is the process ID of

child process, when the call returns in the parent process. The

return value is „0‟ when it returns inside the child process. The

return value is -1 (represents call fails), when the process has

memory insufficiency/ too much processes/no new process is

created. In case the process was created successfully, both child

process and parent process continue from the same place in the

code where the fork() call was used.

IV. CHILD PROCESS TERMINATION

In the UNIX multiprocess scenario, the environment have parent

and child processes. There will be a possible situation that either

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 52 | P a g e

parent process exits before child or child exits before parent. The

following states are possible in the parent and child process

communications.

 When a child process exits, the signal is to be sent to the

parent indicating the child‟s deaths state. After

acknowledging, the child process and its status is

removed from the process table. The duration of time

between child exits and its acknowledgment to the

parent is called childs "zombie" state.

 When a parent process terminates, the child process

associated with parent is known as orphan process. An

orphan process will be considered as child of „init‟

process. The child process is automatically inherited by

the 'init' process has the process number 1. The purpose

of; init‟ process is to ensure that no child process is in

“zombie” state. The written „init‟ process properly

acknowledges the death of its child process to the

parent.

 When the parent process is not properly coded, the child

remains in the zombie state forever. Such processes can

be noticed by running the 'ps' command (shows the

process list), and seeing processes having the string

"<defunct>" as their command name.

A. The wait() System Call

The wait() system call is invoked when the parent process is

required to know the status of child process. The state change of

child is considered to be: the child process is terminated, the

process is stopped, and the process is resumed. It is one of the

way to acknowledge the parent process about the death of the

child process. During the wait() is invoked, the process is

suspended until one of its child processes exits. The call returns

to exit status of child.

V. COMMUNICATIONS VIA PIPES

One or more related task may have the communication through

pipe. In this manner, one task is dependent on previous task. So

the new task is started from the earlier one as they are supposed

to accomplish some related tasks.

A. What Is a Pipe?

A pipe is a special command in UNIX, used to control from

where the input of command comes and where the output must

go. It is used to connect two or more command together in a

stream and control the input and output of the command. This

mechanism considers the two processes such as ancestor and

successor and sends a byte stream from one to other. The

protocol must be carefully designed to utilize the pipe

mechanism. The two way communication requires a parallel

pipes to communicate.

The pipe protocol assures that the order, in which data is written

to the pipe, is the same order as that in which data is read from

the pipe. It assures that the data flow will be in the order from

source to destination and no interruption occurs until one of the

process exits.

B. The pipe() System Call

The pipe() system call has two types of file descriptors as an

argument. The file descriptor refers to a pipe inode, and places

them in the array pointed to by fields. filedes[0] is for reading,

filedes[1] is for writing. The return value is 0 for the success

condition, -1 is returned for error. The errno represents the status

of error such as field is not valid, too many file descriptors etc.

C. Two-Way Communications with Pipes

In the multiple communication process, the two way protocol is

used to communicate both directions, starts in parent to child and

child to parent. The communication system what we require here

is to open two pipes – one pipe from source to destination and

other from destination to source. In this system of

communication, the situation of arising deadlock is an

unavoidable one.

D. Deadlock

During the inter processes communication, more than one

processes are waiting for resources at the same time. The

requested resources or event might be used by other processes in

the same environment. The deadlock situation occurs when two

processes communicate via two pipes. Here are two scenarios

that could lead to such a deadlock:

 When two pipes are connected for two processes, the

conditions such as both pipes are empty, but both processes

are in a state to read data from their input pipes. Here each

pipe will block on each other and thus in stuck situation.

 The second condition is more complex. Here two processes

(A & B) are communicated via pipes. Each pipe has a

temporary storage with a limited size of buffer. When a

process A wants to write data on pipe A, it fills the data on

the buffer A by write () call. The buffer is kept to read by

the read process. When the buffer is full, the read operation

is allowed to execute and write() system call will be

blocked until the buffer gets free space. Both processes

write operations will get blocked if the buffer is full and no

read() occurs. Current two processes will be in deadlock.

VI. SYSTEM V IPC

The complex situation of inter process communication can be

handled by invoking the mechanism called message queues,

shared memory, and semaphores. The message queues

mechanism is used to send and receive the messages among the

inter processes, whereas the shared memory concept is used to

allow the processes to share data in memory. The semaphore

system is used to synchronize the process of resource access in

multi process situation. It is a control variable that is used to

control the access of common resources in a parallel

communication system. The semaphore variable may change its

status according to the condition specified by the programmer.

The variable is used as a control variable to access the system

resources.

VII. PERMISSION ISSUES

A. Private Vs. Public

The multiple processes can also be controlled or monitored by

assigning privileges on access of resources. The access specifier

is either private or public. Private access specification for a

resource allows its own process or its child process to access

whereas the public specification on a resource allows any

process to access.

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 53 | P a g e

B. System Utilities To Administer System-V IPC Resources

As the inter process communication system is live outside the

scope of a single process, the mechanism of maintaining the

process status is required. The process of accounting deleted

resources, crashed resources, number of exiting resources is

needed to establish. Two utilities are used to administer the

overall processes like 'ipcs' - to check usage of SysV IPC

resources, and 'ipcrm' - to remove such resources.

The command 'ipcs' shows the utilization report for the

resources. It gives the statistics such as identifier, owner, size of

resources, and access permissions for various resources such as

shared memory segments, semaphore arrays and message

queues. Different unique report will be generated for each

resource types. The command has flag representation to exhibit

the particular type of resources. It can also be enterd by the user

at the command „ipcs‟. The command which has '-m' refers the

shared Memory segments, „-q‟ represents message Queues and '-

s' for Semaphore arrays. The command like 'ipcs' with the '-l' flag

is used to view the limits or size of the system and '-u' flag

represents the memory usage statistics.

VIII. MESSAGE QUEUES

The way of establishing protocol is one of the problems with

pipes. This protocol is based on sending separate messages. The

pipe() system is based on byte stream. The input data stream

from the pipe is needed to be converted in to packets before

sending to the consecutive command. In the pipe processing

system all the processes are executed in FIFO manner, that the

processes are executed in the order they arrived. Priority or

intermediate accessing is a difficult task. The intermediate

process must wait until the entire proceeding task to complete its

processes. This means that before reading any part of the stream

must consume all the bytes sent before the piece you're looking

for, and thus it is needed to construct queuing mechanism on

which data can be placed.

A. Creating A Message Queue – msgget ()

The msgget() system call is used to initiate a message queue. The

command has two attributes of parameters such as a queue key,

and flags. The key is one among the following:

 IPC_PRIVATE - used to create a private message

queue.

 A positive integer - used to create (or access) a publicly-

accessible message queue.

The second parameter contains flags which are used to denote

the control on which the system is processed.

IX. BACKGROUND - VIRTUAL MEMORY

MANAGEMENT UNDER UNIX

To achieve virtual memory, the system divides memory into

small pages each of the same size. For each process, a table

mapping virtual memory pages into physical memory pages is

kept. When the process is scheduled for running, its memory

table is loaded by the operating system, and each memory access

causes a mapping (by the CPU) to a physical memory page. If

the virtual memory page is not found in memory, it is looked up

in swap space, and loaded from there (this operation is also

called 'page in').

When the process is started, it is being allocated a memory

segment to hold the runtime stack, a memory segment to hold the

programs code (the code segment), and a memory area for data

(the data segment). Each such segment might be composed of

many memory pages. When ever the process needs to allocate

more memory, new pages are being allocated for it, to enlarge its

data segment.

When a process is being forked off from another process, the

memory page table of the parent process is being copied to the

child process, but not the pages themselves. If the child process

will try to update any of these pages, then this page specifically

will be copied, and then only the copy of the child process will

be modified. This behavior is very effcient for processes that call

fork () and immediately use the exec () system call to replace the

program it runs.

X. COMPARISON MODEL

An overview of actual transaction processing system built by

using System V IPC. The name space used by System V IPC is

an advantage not a problem if we use file descriptors. Because

identifiers allow the process to send the message to a message

queue with a single function call. Bulk of data transferred from

one process to another process. We have created a bench mark

program using pipes and message queues. In both the cases, the

various sizes of data are inputted for both the programs and we

have analysied the performance and response rate. The size of

the data various from bytes to Maga Bytes.

XI. RESULT ANALYSIS

The bi-directional flow of data between the process using the

message queues and pipes are analyzed by giving various sizes

of data. The test consisted of the program that created IPC

channel called fork and sent various Bytes ,KiloBytes and Maga

Bytes data from parent to the child. Data was sent using various

calls to msgsend, with a message length of various byte sizes, for

the message queue, and various calls to write, with the length of

various bytes size for the stream pipe. We got the timing

comparision table for pipes, message queues and sockets.

Table 1: Timing comparison of two models

 Pipes D1

S.No Data Size Start time End time

1. 32 bytes 20:21:22 20:21:22 0

2 306 bytes 20:22:01 20:22:02 1

3. 3.0 KB 20:23:38 20:23:40 2

4. 30 KB 20:24:00 20:24:01 1

5. 270.4 KB 20:24:20 20:24:23 3

6. 1.6MB 20:24:46 20:24:50 4

7. 33MB 20:25:05 20:26:00 55

8. 99.0 MB 20:26:25 20:29:06 161

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 54 | P a g e

Table1. Timing analysis of Pipes

Table2. Timing analysis Of Pipes

Table 3: Timing analysis of Streaming Sockets

The user, System and clock for the 20 Mega bytes of data is

analysis with pipes and message queues. The times are all in

seconds.

Table2. Comparison of user ,system, Clock Times

IPC SVR4

 USER System Clock

Message

Queues

0.7 19.6 20.1

Pipes 0.5 21.4 21.9

 Data was sent using various calls to write, with the length of

various bytes size for the stream pipe. We got the timing

comparison table for pipes. The following graph figure 1

represents the performance of pipes for various sizes of data

mentioned in table1. The performance curve states that response

time varies when there is a bulk of data inputted.

Figure 1. Response time for pipes

Data was sent using various calls to msgsend, with a message

length of various byte sizes, for the message queue. The

following graph figure 2 represents the performance of message

queues for various sizes of data mentioned in table1. The

performance curve states that response time varies when there is

a bulk of data inputted.

 Figure 2. Response time for message queues

Figure 3. Response time for Streaming sockets

Datagram sockets

Data Size Start time End

time

D4

32 bytes 21:03:12 21:03:13 1

306 bytes 21:07:31 21:07:32 1

3.0 KB 21:09:07 21:09:08 1

30 KB 21:04:55 21:04:56 1

270.4 KB 21:05:22 21:05:23 1

1.6MB 21:05:51 21:05:52 1

33MB 21.06:15 21:06:16 1

99.0 MB 21:06:46 21:06:48 2

 Streaming sockets
S.No Data Size Start time End time D3

1. 32 bytes 20:49:23 20:49:24 1

2 306 bytes 20:50:21 20:50:22 1

3. 3.0 KB 20:58:07 20:59:27 1

4. 30 KB 20:00:38 20:00:39 1

5. 270.4 KB 21:01:55 21:01:57 2

6. 1.6MB 20:56:34 20:56:36 2

7. 33MB 20:57:08 20:57:11 3

8. 99.0 MB 20:58:15 20:58:21 6

 Streaming sockets
S.No Data Size Start time End time D3

1. 32 bytes 20:49:23 20:49:24 1

2 306 bytes 20:50:21 20:50:22 1

3. 3.0 KB 20:58:07 20:59:27 1

4. 30 KB 20:00:38 20:00:39 1

5. 270.4 KB 21:01:55 21:01:57 2

6. 1.6MB 20:56:34 20:56:36 2

7. 33MB 20:57:08 20:57:11 3

8. 99.0 MB 20:58:15 20:58:21 6

Special Issue Published in International Journal of Trend in Research and Development (IJTRD),

ISSN: 2394-9333, www.ijtrd.com

National Conference on Social, Mobile, Analytics And Cloud Services (NCSMAC-2016) organized by Department of CSA, School
of Computing Sciences and Engineering, Periyar Maniammai University, 15th & 16th Sep 2016 55 | P a g e

Figure 4. Response time for Datagram Sockets

Figure5. states that ,when we compare the response time of pipes

and message queues, for smaller size of data message queues

perform better than pipes. When the data size increases, the

performance of the pipes is better than message queues. When

the data size is 99.0 MB the response time for pipe is 161

seconds and for message queue is 220 seconds and streaming

sockets is 6 seconds and datagram socket is 2 secongs

Figure 5: Comparison of response time for pipe, queue and

sockets

CONCLUSION

The fundamental problem System V IPC is that the IPC

structures are system wide and donot have reference count. For

example if we create a message queue, place some message on

the queue and them terminate, the message queue is not deleted.

They remain in the system until specifically read or deleted: by

some executing ipcrm(1) command or by the system being

rebooted . Compare this with the pipe which is completely

removed when the process to reference it terminates. The

message queues are that they are reliable, flow controlled, record

oriented and can be processed in other than first in first out order.

The streams also possess all these properties, although an open is

required before sending to a stream and close required when we

are finished. Both message stream and pipes are connection less.

The message types are identified by the priorities. We compare

the reponse time of pipes, message queues,streaming sockets and

datagram sockets for small and large size of data datagram

sockets perform better than streaming sockets. But for the bulk

size of data datagram sockets overcomes the message queues,

streaming sockets and pipes.

References

[1]. Comparing Some IPC Methods on Unix by Gene Michael

toverSunday, 27 January 2002

[2]. Mike Gancarz, The Unix Philosophy. (1995) Digital Press;

Newton, MA. ISBN 1-55558-123-4.

[3]. Performance analysis of five interprocess communication

mechanisms across UNIX operating systems Patricia K.

Immich, Ravi S. Bhagavatula and Dr. Ravi

PendseDepartment of Electrical and Computer

Engineering, Wichita State University, 1845 Fairmount

Box 44, Wichita, KS 67260, USA 3 May 2003

[4]. www.ebooknetworking.net/ebooks/unix-kernel-interproce

ss-communication-parameters.html

[5]. Named Pipe Security, Interprocess Communitions:

Platform SDK, MSDN Library, January 2001.

[6]. Berkeley UNIX System Calls and Interprocess

Communication, January 1987.

[7]. R.Klefstad, UNIX Network Programming, Introduction to

UNIX Local and Remote Interprocess Communication,

