
5
Designing Software

Architectures
Software architecture design is a key step in building successful software systems, and this
chapter begins by exploring what software architecture design is, and why it is important
in a software project.

There are two main approaches to architecture design: the top-down and bottom-up
approaches. Each approach has advantages and disadvantages, and in this chapter you will
learn how to select the best approach for a given project. Designing a software and
architecture can be challenging, but we will take a look at design principles and existing
solutions that can be leveraged in a design.

Architecture design processes provide guidance to software architects to ensure that a
design satisfies requirements, quality attribute scenarios, and constraints. This chapter
covers the activities that are typically performed as part of an architecture design process
and then provides an overview of four processes: attribute-driven design (ADD),
Microsoft's technique for architecture and design, the architecture-centric design method
(ACDM), and the architecture development method (ADM).

The chapter will conclude by explaining how to use an architecture backlog to prioritize
work and track the progress of architecture designs.

In this chapter, we will cover the following topics:

Software architecture design
The importance of software architecture design
Top-down versus bottom-up design approaches
Greenfield versus brownfield software systems
Architectural drivers
Leveraging design principles and existing solutions
Documenting the software architecture design

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[112]

Using a systematic approach to software architecture design
Attribute-driven design (ADD)
Microsoft's technique for architecture and design
Architecture-centric design method (ACDM)
Architecture development method (ADM)
Tracking the progress of the software architecture's design

Software architecture design
Software architecture design involves making decisions in order to satisfy functional
requirements, quality attributes, and constraints. It is a problem-solving process that leads
to the creation of an architecture design.

Software architecture design comprises defining the structures that will make up the
solution and documenting them. The structures of a software system are made up of
elements, and the relationships between the elements. The properties and behaviors of the
elements that are publicly exposed, through an interface, should be identified as part of the
design. The design allows you to understand how the elements behave and interact with
each other. Private implementations of the elements are not architecturally significant and
need not be considered as part of the design.

The software architecture design serves as technical guidance for development and
typically occurs iteratively until the initial architecture is at a point where the development
team can begin their work. Once an initial architecture is designed, it can continue to evolve
as development is taking place. For example, additional design iterations may occur to
refactor an architecture to fulfill new requirements or quality attributes.

Software architecture design is a creative process. Software architects have the privilege of
coming up with solutions to complex problems and can use creativity to do it. It can be one
of the most fun and rewarding parts of a software project.

Making design decisions
The set of software requirements consists of a series of design issues that must be solved.
For each of these design issues, such as providing certain business functionality, respecting
a particular constraint, meeting performance objectives, or providing a certain level of
availability, there may be numerous ways to solve the problem. You will need to consider
the strengths and weaknesses of these alternatives in order to select the most appropriate
choice.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[113]

A large part of software architecture design is making design decisions to resolve issues so
that a solution can be implemented. As the software architect, you will be leading the
decision-making process.

It is a collaborative process, and usually the best designs incorporate knowledge and
feedback from multiple people, such as other software architects and experienced
developers. Joint designs and reviewing the architecture with others is beneficial in coming
up with a solid software architecture design.

The result of the design is a set of decisions that shape your software architecture. The
design is documented in artifacts that can be used for the implementation of a solution.

Software architects should keep in mind that a decision that is made for one design issue
may affect another one. This is why software architecture design is an iterative process.
Each decision for a design issue may not be optimal for another issue, but the overall
solution must be acceptable by satisfying all of the requirements.

Perfect is the enemy of good, an aphorism that has its origins in the thoughts of the French
philosopher, Voltaire, and others, is applicable to software architecture design. A
completed design may not be perfect, as there will be conflicting requirements that need to
be met, and trade-offs made in order to meet them. If the design satisfies all of the
requirements, then it is a good one, even if it is not perfect.

Software architecture design terms
Before we go any further, let's define some of the terms that we will be using while
detailing the process of software architecture design. These terms can vary, depending on
the organization and the team. Regardless of the terms used, the important thing is that
they are used consistently by the team members and that they are understood by all team
members.

For the purposes of this book, we'll be using the terms structure, element, system,
subsystem, module, and component.

Structure
Structures are groupings of, and relations between, elements. Anything that is complex and
made up of elements can be referred to as a structure. We previously defined software
architecture, in part, by saying it is made up of the structures, their elements, and the
relationships of those elements with each other.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[114]

Element
An element is a generic term that can be used to represent any of the following terms:
system, subsystem, module, or component. If we want to refer to pieces of a software
application in a general way, we can refer to them as elements.

System
The software system represents the entire software project, including all of its subsystems.
A system consists of one or more subsystems. It is the highest level of abstraction in a
software architecture design.

Subsystem
Subsystems are logical groupings of elements that make up a larger system. The
subsystems can be created in a variety of ways, including partitioning a system by
functionality.

Although they do not have to be, subsystems can represent standalone software
applications. An overall software system may be composed of multiple subsystems, and
any number of them might be a standalone application. These standalone applications can
be external applications that were not developed by the organization.

Organizing a larger software system into subsystems lowers complexity, and allows for
software development to be better managed. In some cases, one or more development
teams may be formed for each subsystem. Each subsystem is made up of one or more
modules.

Module
Modules, like subsystems, are logical groupings of elements. Each module is contained
within a subsystem and consists of other modules and/or components. They are typically
focused on a single logical area of responsibility.

Development teams assigned to a particular subsystem will be responsible for the modules
that make up that subsystem.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[115]

Component
Components are execution units that represent some well-defined functionality. They
typically encapsulate their implementation and expose their properties and behaviors
through an interface.

Components are the smallest level of abstraction and typically have a relatively small
scope. Components can be grouped together to form more complex elements, such as
modules.

The importance of software architecture
design
A software architecture is the foundation of a software system. The design of the
architecture is significant to the quality and long-term success of the software. A proper
design determines whether the requirements and quality attributes can be satisfied.

There are a number of reasons why a good software architecture design is critical to
building useful software. In this section, we will explore the following reasons:

Software architecture design is when key decisions are made regarding the
architecture.
Avoiding design decisions can incur technical debt.
A software architecture design communicates the architecture to others.
The design provides guidance to the developers.
The impact of the software architecture design is not limited to technical
concerns. It also influences the non-technical parts of the project.

Making key decisions
It is during software architecture design that key decisions are made that will determine
whether requirements, including quality attributes, can be satisfied. Software architecture
enables or inhibits quality attributes, so design decisions play a large role in whether or not
they can be met.

Some of the earliest decisions are made during design. If these decisions need to change, it
is easier and less costly to change architectural decisions early, before coding has even
begun, than to make changes later.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[116]

Avoiding design decisions can incur technical
debt
Critical decisions are made during the design, and for that reason, there is a cost to either
delaying a design decision or not making one at all. Delaying or avoiding certain design
decisions can incur technical debt.

Technical debt is similar to financial debt. In the context of design, it is the cost and effort
for the additional work that will be necessary later due to decisions that are made now, or
because decisions have not been made.

In addition to delaying or avoiding decisions, a decision may be made knowing that it will
cost some amount of technical debt. As a software architect, you may decide to take an
easier route to a solution, incurring technical debt, even though there is a better solution. As
is the case with financial debt, technical debt is not always a bad thing. Sometimes, you will
want to pay a debt later in order to get something now. For example, designing a better
long-term solution may take more time and effort, and you may decide on a solution that
takes less time in order to get the software in production to take advantage of a market
opportunity.

It can be difficult to measure the impact of technical debt accurately. Keep in mind that in
addition to the time and effort that might be required later to make up for a decision that is
made or avoided now, technical debt can have other negative repercussions. For example, a
design that is not optimal, leading to lower levels of modifiability and extensibility, can
hinder the team's ability to deliver other functionality. This is an additional cost that should
be added to the technical debt.

The software architect needs to take all of these factors into consideration when deciding
whether or not to incur a technical debt.

Communicating the architecture to others
The results of the architecture design allows you to communicate the software architecture
to others. There will be a variety of people who will potentially be interested in the design
of the architecture.

The design will also improve cost and effort estimates since it influences what tasks will be
required for implementation. Understanding the nature of the work that lies ahead and
what types of tasks will be needed to complete the project will assist project managers with
their planning. Being able to estimate cost, effort, and the quality attributes that will be met
is also useful for project proposals.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[117]

Providing guidance to developers
A software architecture design provides guidance to the development team, by steering
implementation choices as well as providing training on the technical details of the project.

The design imposes implementation constraints, making it important for coding tasks.
Knowing the software architecture design helps developers be aware of the implementation
choices available to them, and minimizes the possibility of making an incorrect
implementation decision.

It can also be used as training for developers. At the start of the project, the development
team will need to understand the design decisions that have been made, and the structures
that have been designed. Creating detailed designs for components and implementing
them requires an understanding of the architecture design. If new developers join the team
later, they can also use the architecture design as part of their onboarding.

Influencing non-technical parts of the project
Another reason that software architecture design is important is the fact that design
decisions affect aspects of the software project other than the architecture. For example,
certain architecture design decisions could affect the purchasing of tools and licenses, the
hiring of team members, the organization of the development environment, and how the
software will eventually be deployed.

Top-down versus bottom-up design
approaches
There are two fundamental approaches to the design of software architecture. One is a top-
down design approach, and the other is a bottom-up approach. These strategies apply to a
variety of disciplines, including software architecture design. Let's look at both of them in
more detail.

Top-down approach
A top-down approach starts with the entire system at the highest level, and then a process
of decomposition begins to work downward toward more detail. The starting point is the
highest level of abstraction. As decomposition progresses, the design becomes more
detailed, until the component level is reached.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[118]

While the detailed design and implementation details of the components are not part of the
architecture design, the public interfaces of the components are part of the design. It is the
public interfaces that allow us to reason about how components will interact with each
other.

A design using the top-down approach is typically performed iteratively, with increasing
levels of decomposition. It is particularly effective if the domain is well understood.

This systematic approach has been favored by enterprises since it can handle large and
complex projects and because the method of design is planned. A systematic approach to
architecture design is attractive to enterprises because it can help with time and budget
estimates. However, a strict top-down approach, which requires a lot of upfront
architecture design, has become less common in modern software architecture.

Advantages of the top-down approach
There are a number of benefits to using a top-down approach. It is a systematic approach to
design and breaks the system down into smaller parts. As a system is decomposed, it lends
itself well to the division of work. On larger projects with multiple teams, this work can be
divided among the teams.

As further decomposition takes place, tasks can be created for individual team members.
This supports project management in the assignment of tasks, scheduling, and budgeting.
This type of ability to plan is attractive to enterprises. The management teams of
organizations may prefer, or even insist on, a top-down approach. Earlier in the book, we
discussed how, as a software architect, you may be asked to assist with project estimates,
and a top-down approach will allow you to do that with more accuracy.

Although this approach works well on both small and large projects, it can be particularly
useful for large projects. By decomposing a system into smaller components, a large project
can become more manageable as the size and complexity of each component is reduced.

Disadvantages of the top-down approach
A strictly top-down approach runs the risk of a big design up front (BDUF), sometimes
referred to as a big up-front design (BUFD). Software is complex and it can be difficult to
create the entire architecture up front. Design flaws or missing functionality in the
architecture may not be uncovered until later in the process, when components are
designed or implemented. If architecture changes are required in higher levels of the
architecture after some work is already completed, it will be more difficult to make the
modifications.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[119]

A top-down approach works best when the domain is well understood, which is not always
the case. Plenty of projects begin without the domain being fully understood. Even when it
is understood, stakeholders and users can sometimes be unclear as to what the software
should do, and how it should work.

If multiple teams are working on a project, each responsible for a particular subsystem or
module, knowledge sharing and reuse can be difficult with this approach. Each team can
work independently of the others, which has its advantages, but it does not facilitate the
sharing of code or knowledge. The software architect may have to recognize areas of reuse,
abstract them out, and communicate them to the teams. Another way to mitigate this issue
is to provide opportunities and collaboration tools for teams to communicate with each
other.

If you use the top-down approach, be careful not to become an ivory tower architect. If you
design the higher levels of an architecture and then hand them off to developers to handle
the lower-level detailed design, it is easy to become disengaged. As much as your
organization and the project permits, make an effort to stay involved with the team. If
architectural changes are required later, you will already be familiar with the ongoing
implementation, which will help you to make the correct changes.

Bottom-up approach
In contrast with the top-down approach, the bottom-up approach begins with the
components that are needed for the solution, and then the design works upward into
higher levels of abstraction. Various components can then be used together, like building
blocks, to create other components and eventually larger structures. The process continues
until all the requirements have been met.

Unlike the top-down approach, which begins with the high-level structure, there is no up-
front architecture design with the bottom-up approach. The architecture emerges as more
work is completed. Hence, this is sometimes referred to as emergent design or emergent
architecture.

The bottom-up approach does not require that the domain be well-understood, as the team
only focuses on a small piece at a time. The system grows incrementally as the team learns
more about the problem domain as well as the solution.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[120]

Advantages of the bottom-up approach
One advantage of a bottom-up approach is the greater level of simplicity. The team only
has to focus on individual pieces and builds only what it needs for a particular iteration.

This approach works well with agile development methodologies. With an iterative
approach that handles change, refactoring can take place to add new functionality or to
change existing functionality. Each iteration ends with a working version of the software
until eventually the entire system is built. Agile practices, such as automated unit testing
and continuous integration, are encouraged and can lead to higher quality software.

A bottom-up approach avoids the possibility of a big design up front, which can lead to
overdesigning a solution. Some in the agile community feel that a lot of design effort up
front is wasted time and that an emergent design, or no design up front (NDUF), would be
more effective.

The bottom-up approach allows the development team to begin coding very early in the
process, which also means testing can occur earlier. This includes automated unit testing as
well as manual testing by team members such as QA analysts and other users. Getting
feedback earlier in the process allows the team to identify any necessary changes earlier.

This approach facilitates code reuse. As the team is focused on a limited number of
components at any given time, recognizing opportunities for reuse becomes easier.

Disadvantages of the bottom-up approach
A bottom-up, or emergent, approach, assumes that change is cheap. Agile methodologies
and practices provide an approach that anticipates change and can adapt to it. However,
depending on the nature of the change, refactoring software architecture design can be very
costly.

A bottom-up approach, with no initial architecture, can lead to lower levels of
maintainability. With the refactoring that may be necessary with this approach, issues can
arise. If the team is not diligent, this problem can become worse over time.

The entire scope of work may not be known when using this approach. This makes it more
difficult to plan and estimate the entire project, which may be unacceptable for enterprise
software.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[121]

One of the disadvantages of the top-down approach is that design flaws may not be
detected until later, leading to costly refactoring. However, just because there is no initial
design with the bottom-up approach does not make it immune to uncovering design flaws
later in the project. It may not be until after the architecture emerges that certain design
flaws become apparent.

Which approach should I use?
There are certain factors to consider when deciding whether the top-down or bottom-up
approach is better for a software project. Software architects may find it advantageous to
use a top-down approach if more than one of the following is true:

The project is large in size
The project is complex
Enterprise software is being designed for an organization
The team is large, or there are multiple teams that will be working on the project
The domain is well-understood

It may be more appropriate to use a bottom-up approach if more than one of the following
is true:

The project is small in size
The project is not very complex
Enterprise software for an organization is not being designed
The team is small, or there is only a single team
The domain is not well-understood

Taking an extreme approach, such as doing a big upfront architecture design or no
architecture design at all, is typically not ideal. Although some situations will lead you to
select a top-down or bottom-up approach, software architects should also consider using a
combination of the two approaches. In this way, you may be able to realize some of the
benefits of both approaches, while minimizing the drawbacks.

In the beginning of the project, rather than starting to code immediately, a top-down
approach will provide the opportunity to spend at least some time thinking about the
overall structure of the design. The design of a high-level architecture provides some
structure that can then be leveraged for further design and development.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[122]

A high-level architecture design can be used to define and organize the teams, and
provides details to project management so that they can perform resource allocation,
scheduling, and budget planning. As a software architect, you may be asked to provide
input regarding these types of project management activities, and having at least a high-
level architecture will assist you in such tasks.

Those who advocate for a strictly bottom-up approach, in which the architecture emerges
from implementation, tend to think that software architecture inhibits agility and the ability
to make changes to the software. However, as was mentioned in Chapter 1, The Meaning of
Software Architecture, a good software architecture actually facilitates making changes as
well as managing them. A good architecture allows you to understand what it would take
to make a particular change.

Using a top-down approach for part of the design does not require a big upfront design.
You can focus on architecturally significant design issues, and once a high-level
architecture is established, you can employ a bottom-up approach. Components and
modules based on the high-level architecture can then be designed and implemented.

The quality of the architecture design is not solely dependent on selecting the correct
approach. The correct design decisions must be made during the design process, as both a
top-down as well as a bottom-up approach can lead to poor architecture designs. A design
created with a top-down approach can miss key requirements, which may lead to costly
architectural refactoring. A design created with a bottom-up approach may require
substantial refactoring while the team figures out how the software system should be
structured.

No single approach is applicable to all situations. Each project, organization, and team is
different, so the decision of which approach to take will vary. Even with a hybrid approach,
the amount of upfront architecture design that is necessary will vary, so it is about
determining how much design is needed. That is part of the challenge of being a software
architect. Good architects eventually learn how much design is appropriate for a given
situation.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[123]

Greenfield versus brownfield software
systems
When you are starting the design process, one of the first considerations is whether you are
designing a greenfield or a brownfield system. The terms greenfield and brownfield are
used in a number of disciplines. It is an analogy to a construction project, and whether it
will begin on greenfield land, as in land that is undeveloped, or brownfield land, referring to
land that was previously developed but is not currently in use.

Greenfield systems
A greenfield software system is a completely new software application, one in which you
can start with a clean slate. There are no constraints based on any prior work. A greenfield
system can be designed for a well-understood domain or for a novel domain.

A well-understood domain is one that is mature, and the possibilities for innovation are
very limited. Examples include Windows desktop applications, standard mobile
applications, and enterprise web applications. There will be existing frameworks, tools, and
sample architectures for the software that you need to build. The software architectures of
existing applications can be used as a guide.

 It will be more likely that you are developing software for a well-understood domain, and
the benefit is that there will be a tremendous amount of knowledge that you can leverage
from the experience of those who have built similar applications.

A greenfield system for a novel domain is also a new software application that does not
need to take into consideration any prior work. The difference between a greenfield system
for a mature domain and one for a new domain lies in the fact that a new domain is not as
well understood, and requires a lot more innovation.

Unlike a well-understood domain, you will not find as much supporting information for a
new domain. Rather than relying on a plethora of reference architectures or referring to a
large knowledge base, you will find yourself spending time building prototypes to test out
your solutions.

For novel domains, it may be beneficial to design a throwaway prototype initially. These are
prototypes of some piece of a software system so that you can test it out, such as getting
feedback from users or testing quality attributes. They will help you to gain an
understanding of what will make a viable solution for a novel domain.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[124]

Throwaway prototypes are not built for long-term use, hence the term throwaway, so
qualities such as maintainability and reusability are not the focus of such prototypes. If you
are using new technologies, or technologies that are not already familiar to you, a prototype
can be a good way to try out a solution.

Brownfield systems
A brownfield software system is an existing software system. If changes to an existing
system require architectural changes, architecture design will be needed. Modifications
may be necessary for purposes such as correcting defects, implementing new functionality,
or changing existing functionality.

Architectural changes may also be performed on existing software to improve it in some
way without changing any functionality. For example, an architecture for an existing
software system might be refactored to improve a particular quality attribute. Most of the
time, work on brownfield systems does not involve wholesale changes in the overall
architecture unless major rework is required.

One of the crucial first steps for the software architecture design of brownfield systems is to
gain an understanding of the existing architecture. You need to understand the overall
structure, the elements, and the relationships between those elements. From there, the
design is not so different from a greenfield system that has been through some iterations to
establish an initial architecture.

We will explore the topic of architecture for legacy systems in Chapter 14, Architecting
Legacy Applications.

Architectural drivers
Architectural drivers are considerations that need to be made for the software system that
are architecturally significant. They drive and guide the design of the software architecture.
Architectural drivers describe what you are doing and why you are doing it. Software
architecture design satisfies architectural drivers.

Architectural drivers are inputs into the design process, and include:

Design objectives
Primary functional requirements

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[125]

Quality attribute scenarios
Constraints
Architectural concerns

Design objectives
Design objectives focus on the purpose of the specific architecture design. For the
particular design in question, what are the reasons behind why the software is being
designed?

The design objectives influence the design and are therefore one of the architectural drivers.
A common design objective is to design an architecture for a solution, prior to
development. The overall objective is to facilitate the implementation of a solution that will
satisfy requirements.

This type of design objective might be for a greenfield or a brownfield type of system. As
we already explored, the differences between these types of systems might lead you to
focus on different design objectives.

Designing a software architecture for development is not the only type of design objective.
As a software architect, you may find yourself involved with project proposals. For such
pre-sales activity, the design objective may focus on coming up with the software's
capabilities, the possible timeframe for delivery, a breakdown of work tasks, and the
feasibility of the proposed project. If this is the purpose of the design, then this type of
initial design will not be nearly as detailed as one that you are designing for development.

For the purposes of a project proposal, it will not be necessary to be as detailed as you
would be in preparation for development. You may be required to produce a design for a
project proposal in a short amount of time to meet a particular sales deadline. In addition,
until the sale is complete, you will probably not be allocated the funds or time for a full-
scale design.

Similarly, software architects may need to create a prototype. This may be for a project
proposal, but it could also be to test out a new technology or framework, to create a proof
of concept (POC) for some solution to a particular problem, or to explore how a certain
quality attribute might be effectively met. As with project proposals, if the design objective
is to build a prototype, the focus and scope of the software architecture design will be
different from one that is being done for development.

It is important to keep the design objectives in mind as an architectural driver when
software architecture design is about to begin.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[126]

Primary functional requirements
Another important type of input into the architecture design is the primary functional
requirements that need to be satisfied. Primary functional requirements are those that are
critical to the organization's business goals. In Chapter 3, Understanding the Domain, we
discussed core domains, which refer to the part of the domain that makes the software
worth writing. Some of the primary functionality will come from the core domain. It is
what differentiates the organization from competitors.

Although satisfying functional requirements is a goal of software architecture design, keep
in mind that not all functionality is affected by the architecture. While some functionality
is highly affected by the architecture, other functionality can be delivered equally as well
with different architectures.

Even in cases where functionality is not influenced by the architecture directly, functional
requirements may be an architectural driver for other reasons. One example of this would
be the need to make modifications to the functionality later. Maintainability and
modifiability of the software are affected by the software architecture.

Quality attribute scenarios
Quality attributes are measurable properties of a software system. They are the ilities, such
as maintainability, usability, testability, and interoperability. We have been stressing the
importance of quality attributes since they play such an important part in the success of
software systems, and because software architecture decisions will affect them.

This makes quality attributes one of the main architectural drivers for software architecture
design. The design decisions that are made will determine what quality attributes will be
met. As an architectural driver, quality attributes are typically described in the context of a
particular scenario.

A quality attribute scenario is a short description of how the software system should
respond to a particular stimulus. Scenarios make quality attributes measurable and testable.
For example, a quality attribute of performance or a requirement that states a particular
function should be fast is not measurable or testable. An actual example of a valid quality
attribute related to performance would be as follows: When the user selects the Login option, a
Login page is displayed within two seconds.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[127]

Prioritizing quality attribute scenarios
Prior to the start of the architecture design process, the quality attribute scenarios should be
prioritized. It is helpful to be aware of the priority of each quality attribute scenario when
designing the architecture. In addition to being able to plan accordingly, such as focusing
on higher priority quality attributes first, there may be trade-offs involved when enabling
certain quality attributes. Understanding the priorities will help you make better design
decisions regarding the quality attributes and any trade-offs that need to be made.

Quality attribute scenarios can be prioritized by ranking them based on two criteria: their
business importance and the technical risk associated with the scenario. A ranking scale of
High (H), Medium (M), and Low (L) can be used.

Stakeholders can help to provide the ranking based on business importance, while the
software architect typically provides the ranking based on technical risk. Once the rankings
are complete, each quality attribute should have a combination of the two rankings.

If each quality attribute scenario were assigned a unique number, they could be placed in a
table such as the following:

Business importance/technical risk L M H
L 6, 21 7, 13 15
M 3, 10, 11 14, 16, 17 1, 5
H 4, 18, 19, 20 2, 12 8, 9

Quality attribute scenarios located toward the bottom-right side of the table will be of
higher importance. The most important ones will be those with an H, H ranking, indicating
they were ranked high on both criteria. Initial design iterations can focus on those scenarios
first. Subsequent iterations can consider the most important quality attribute scenarios that
remain, such as H, M and M, H, until all of the quality attribute scenarios have been
considered.

Constraints
Constraints are decisions imposed on a software project that must be satisfied by the
architecture. They typically cannot be changed. They can affect the software architecture
design and are therefore an architectural driver.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[128]

Constraints are generally fixed from the beginning of the project and might be technical or
non-technical. Examples of technical constraints include being required to use a specific
technology, having the ability to deploy to a particular type of target environment, or using
a specific programming language. Examples of non-technical constraints are being required
to abide by a certain regulation, or that the project must meet a particular deadline.

Constraints may also be classified by whether they are internal or external. Internal
constraints originate from within the organization and you may have some control over
them. In contrast, external constraints come from outside of the business and you may not
have any control over them.

Like the other architectural drivers, constraints need to be considered in the design as an
input into the design process.

Architectural concerns
Architectural concerns are interests of the software architect that impact the software
architecture. As a result, they are an architectural driver. Just as functional requirements
and quality attributes are design issues important to stakeholders, architectural concerns
are design issues important to the software architect.

Architectural concerns need to be considered part of the design, but are not captured as
functional requirements. In some cases, they may be captured as quality attributes rather
than architectural concerns, or an architectural concern may lead to new quality attribute
scenarios that need to be met.

For example, a software architect may have concerns related to software instrumentation or
logging. If not already recorded as part of a quality attribute, such as maintainability, the
architectural concern may lead to a new quality attribute.

Good software architects will be able to recognize possible architectural concerns based on
the type of software they are designing. Architectural concerns may also arise from
previous architecture design iterations, so be aware that architecture changes may lead to
new concerns being created from them.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[129]

Leveraging design principles and existing
solutions
Designing a software architecture from scratch for a project with some level of complexity
can be a challenging task. However, software architects have a number of tools at their
disposal when designing an architecture.

The design issues facing a project may have already been solved by others, and rather than
reinventing the wheel, those solutions can be leveraged in your architecture design. These
architecture design principles and solutions, which are sometimes referred to as design
concepts, are building blocks used to design a software architecture.

Selecting a design concept
There are many design concepts, so a software architect needs to know which ones are
suitable for a particular problem, and then select the one that is most appropriate among
the alternatives. You may also find cases where you need to combine multiple design
concepts to create a solution.

Depending on the stage of the architecture design you are in and the nature of the problem,
certain design concepts will make more sense than others. For example, a reference
architecture would be useful when creating the initial structure of the architecture, but later
in the design, when considering a specific quality attribute scenario, a tactic might be used.

Software architects generally determine which design concepts are available by using their
knowledge and experience, leveraging the knowledge and experience of their teammates,
and following best practices.

When choosing a specific design concept among multiple alternatives that have been
identified, you'll want to weigh the pros and cons, as well as the cost of each alternative.
Keep any project constraints in mind when selecting design concepts, as a constraint may
prevent you from using certain alternatives.

Some of the design concepts available to you include software architecture patterns,
reference architectures, tactics, and externally developed software.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[130]

Software architecture patterns
When designing a software architecture, some of the design issues that you will face have
already been solved by others. Software architecture patterns provide solutions for
recurring architecture design problems. Patterns are discovered while observing what
people were doing successfully to solve a particular problem, and then documenting those
patterns so that they can be reused. They can be leveraged in an architecture design if the
software application has the same design issue.

Software architects should take advantage of the work and experience of others when they
have a problem that can be solved by a pattern. The challenging part is to be aware of what
patterns are available, and which ones are applicable to the problem you are trying to solve.

As with any design pattern though, you shouldn't try to force the use of one. You should
only use an architecture pattern if it truly solves the design issue that you have and if it is
the best solution given your context.

We will be exploring software architecture patterns in more detail in Chapter 7, Software
Architecture Patterns.

Reference architectures
A reference architecture is a template for an architecture that is best suited to a particular
domain. It is composed of design artifacts for a software architecture that provides
recommended structures, elements, and the relationships between the elements.

Benefits of reference architectures
A reference architecture can answer many of the most common questions for systems that
need a particular design. They can be very helpful to software architects because they
provide a tested solution to a problem domain, and reduce some of the complexities
involved in designing a software architecture. Reference architectures are proven, in both
technical as well as business contexts, as viable solutions for certain problems.

Using a reference architecture allows the team to deliver a solution quicker, and with fewer
errors. Re-using an architecture provides advantages such as quicker delivery of a solution,
reduced design effort, reduced costs, and increased quality.

Leveraging the experiences of past software applications and learning from them can be of
great value to software architects. They help us to avoid making certain mistakes and can
prevent costly delays that may result from not using a previously proven approach.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[131]

Refactoring a reference architecture for your needs
Just as a design without using a reference architecture may require multiple iterations to
achieve the final result, it is also the case when using a reference architecture. Design
decisions will need to be made regarding the reference architecture.

During iterations for the architecture design, refactoring can take place on a reference
architecture to meet the specific needs of the software application being designed. The
amount of refactoring necessary depends on how closely the reference architecture meets
the functional and quality attribute requirements.

Reference architectures may be created at different levels of abstraction. If you want to use
one and it is not at the level of abstraction you need, you might still be able to learn from it,
and use it as a guide when designing your own architecture.

For well-understood domains, there may be a number of reference architectures available
to you. In contrast, if you are designing a solution for a greenfield system that is in a novel
domain, there may be few, if any, available for you to use. Even for those types of projects
though, you may find a reference architecture you can leverage, even if it is just for a
portion of the design. It might just require more refinement and refactoring than when a
more fitting reference architecture is available.

When you use a reference architecture, you adopt issues from that reference architecture
that you will need to address. If a reference architecture deals with a particular design
issue, you will need to make design decisions about that issue, even if you don't have a
specific requirement related to it. The decision might very well be to exclude something
from your architecture that is in the reference architecture.

For example, if a reference architecture includes instrumentation as a cross-cutting concern,
you will need to make design decisions about instrumentation during your design.

Creating your own reference architecture
Once an organization has a completed software architecture, which may or may not have
used a reference architecture, it can then become a reference architecture itself. When an
organization needs to create new software applications, perhaps as part of a software
product line, it can use the architecture of an existing product as a reference architecture.

Using a reference architecture from your own organization is just like using a reference
architecture from somewhere else. You will reap benefits by doing so, but some amount of
refactoring may be required to use it in a particular application. The added advantage is
that the reference architecture would be likely to already be suited to your particular
domain.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[132]

Tactics
Tactics are proven techniques to influence quality attribute scenarios. They focus on a
single quality attribute, so they are simpler than other design concepts, such as architecture
patterns and reference architectures, which aim to solve a greater number of design issues.

Tactics provide options to satisfy quality attributes, and the use of other design concepts,
such as architecture patterns or an externally built framework, along with code, are
required to fully complete the tactic.

We went over some tactics when we explored quality attributes, such as:

Satisfying a maintainability quality attribute scenario by reducing complexity in
a component by increasing cohesion and reducing coupling
Increasing usability in a scenario by providing friendly and informative
messages to the user
Implementing a retry strategy in a process to handle a possible transient fault in
order to improve an availability quality attribute scenario
Satisfying a portability quality attribute scenario by increasing installability by
ensuring that a software update process to a newer version properly cleans up
the older version

Externally developed software
When designing a software architecture, you will be making design decisions for a number
of design issues. Some of these design issues already have solutions in the form of concrete
implementations that have been developed externally. Rather than build a solution in-
house to solve a particular design issue, you can leverage software that has already been
developed outside of the organization.

The externally developed software can come in different forms, such as a component, an
application framework, a software product, or a platform. There are many examples of
externally developed software, such as a logging library for logging functionality, a UI
framework for creating user interfaces, or a development platform for server-side logic.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[133]

Buy or build?
One of the decisions that software architects need to make is the classic buy or
build dilemma. When you are in need of a solution to a particular design issue, you will
need to decide whether to buy or build it. When using the term buy, we are referring to
using something built externally, and not necessarily the fact that it may have a monetary
cost. Depending on what type of solution you are looking for, there may be a number of
free solutions available to you, including those that are open source.

When deciding whether to use an externally developed solution or to build it in-house, you
must first make sure that you understand the problem that you are trying to solve, and the
scope of that problem. You will need to research whether externally developed software
exists that will solve the design problem. If the problem is unique to your organization,
there may not be any suitable software available.

You should also know whether or not the organization has, or can attain, resources to
build, maintain, and support a solution. If the solution is to be built internally by the project
team, there must be sufficient resources, including time, to build it.

Advantages/disadvantages of building
An advantage of building it internally is that the solution will be unique to your
organization, and tailored to it. The organization will have complete control over the
solution, including full ownership of the source code. This will allow the organization to
modify it in any way that it wants. If a need arises to make changes or add functionality,
the organization will be able to do so with full authority.

Another benefit of building it yourself is that there could be a competitive advantage. If the
solution provides some feature that competitors do not currently have, building it and
owning it could provide a strategic advantage to the organization.

The disadvantages of building it yourself are that it will require time and resources to do
so. The end result may not have as robust a set of features as an externally developed
solution. For example, if you are in need of a distributed, scalable, enterprise-level, full-text
search engine as part of your application, it is probably impractical to build it yourself
rather than use a proven solution that already exists.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[134]

Advantages/disadvantages of buying
Using an externally developed solution has its own set of advantages. It will save time, as
no effort will need to be spent developing it. It may be of higher quality, assuming that it
has already been tested and used in production. Feedback from other users of the software
may have exposed problems that have already been fixed.

The external solution might be continually improved to achieve higher levels of quality and
to introduce new features. Support and training may be available that your team will be
able to leverage.

However, there are downsides to using an externally developed solution. There may be a
cost to using such a solution. Depending on the license type, you may not have access to the
source code and may be limited in how the solution can be used. If you can't modify the
solution, then the solution's functionality will be controlled by someone else, and it may not
exactly fit your needs. In addition, if there are issues with the solution, or you need it
changed in some way, you will need to rely on an external organization.

Researching external software
In order to find out whether external software exists that will be a suitable solution for the
problem being solved, or in order to select an external solution from multiple alternatives
that might be available, some research will be required.

The software architect should consider the following:

Does it solve the design problem?
Is the cost of the software acceptable?
Is the type of license that comes with the software compatible with the project's
needs?
Is the software easy to use? Does the team have resources that can use it?
Can the software be integrated with the other technologies that are going to be
used on the project?
Is the software mature, providing stable releases?
Does it provide the level of support that might be needed, whether that support
is paid support or through a development community?
Is the software widely known, such that the organization can easily hire
resources familiar with it?

Creating one or more prototypes that use the possible candidate solutions is a good way to
evaluate and compare them. A POC to ensure that it is a workable solution is a wise idea.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[135]

Should I use open source software (OSS)?
When searching for an externally developed solution that will solve a design problem, one
possibility is to find open source software (OSS) that will fulfill your needs. OSS is written
by the community and is intended for use by the community.

Given the wide availability and range of open source software, there are many solutions
available for a variety of problems. It is much more common now to use open source
solutions as part of a software application. Some organizations do not permit the use of
open source software but if your organization does, then you should give it consideration
as a viable alternative for a given task.

One consideration when selecting open source software is the license that is associated with
it. The license dictates the terms and conditions under which the software can be used,
modified, and shared. One set of open source licenses that are popular is a group of licenses
that have been approved by the Open Source Initiative (OSI). Some of the OSI-approved
licenses include (in alphabetical order):

Apache License 2.0
BSD 2-clause Simplified or FreeBSD license
BSD 3-clause New or Revised license
Common Development and Distribution License
Eclipse Public License
GNU General Public License (GPL)
GNU Lesser General Public License (LGPL)
MIT license
Mozilla Public License 2.0

There are differences in the terms and conditions of the various licenses. For example, your
application can incorporate open source software that uses the MIT license and you will be
able to distribute your application without making it open source.

In contrast, if your application incorporates software that uses the GNU General Public
License and you then distribute your application, your application would need to be made
open source. This is true even if your application is free and you do not change the open
source software you are using in any way. If your software is for internal use only and it is
not distributed, then your application could remain proprietary and closed source.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[136]

Advantages of using open source software
There are benefits to using open source software, which explains its popularity. Using an
open source solution for a design problem provides many of the same advantages as using
one that has been purchased. You don't have to spend time building the solution, it may
have a robust set of features, and it may already be a tested and proven solution with many
other users.

Unlike software that must be purchased, open source software is freely available so there
are cost savings. You just have to keep in mind the license that comes with the software.

If the open source software is a popular solution with an active community, it might be
continuously improved with bug fixes and new features. You will be able to take advantage
of this work. Bugs may be detected and fixed quickly because many people are using and
working on the code. This is the idea behind Linus's Law, which is named after Linus
Torvalds, the creator of the Linux kernel. Linus's Law basically states that given enough
eyeballs, or people looking at the code, all bugs are shallow. In other words, with many
people looking at the source code, problems will be detected sooner rather than later, and
someone will be able to provide a fix.

Although some view open source software as less secure due to the availability of the code,
some people see it as more secure because there are many eyes that are using, looking at,
and fixing the code.

Another advantage of open source software is the fact that you have access to the source
code. If necessary, your development team will be able to modify it just as you would with
an in-house solution.

Disadvantages of using open source software
Despite its advantages, there are some disadvantages to using open source software that
you should consider. Even though the software is free, there are still costs related to using
it. Someone has to spend time integrating the solution into the software system, and there is
an associated cost for that effort. If the open source software has to be modified in any way
to suit the needs of the project, there is a cost related to that work as well.

If there is no one on the team who knows how to use the software, and it is complex
enough that some training is required, learning how to use a piece of open source software
may also take time.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[137]

Even for a popular open source project with an active community, there is no guarantee
that the software will continue to experience support. There is always a risk of the software
going out of favor. If the project is abandoned, you won't be able to rely on support for bug
fixes or new features unless the development team performs that work for themselves.

One reason an open source software project may become less secure is if no one is actively
working on it. Even if the project has not been abandoned, no one is necessarily reading the
code. The average programmer writes much more code than they read. The existence of
some prominent security bugs has shown that it is possible for critical security
vulnerabilities to go undetected for some time.

Despite Linus's Law, the fact that the source code is readily available introduces a degree of
security risk. Malicious individuals can analyze the source code to identify security
vulnerabilities and attempt to take advantage of them.

Documenting the software architecture
design
An important part of architecture design is documenting the design, including the many
design decisions that are made during the process. This typically comes in the form of
sketching architecture views and documenting the design rationale.

Sketching the architecture design
Software architectures are commonly documented through the creation of architecture
views. Architecture views are representations of a software architecture that are used to
document it and communicate it to various stakeholders. Multiple views of an architecture
are typically required, as a software architecture is too complex to be represented in a
single, comprehensive model.

Formal documentation of a software architecture through views will be covered Chapter
12, Documenting and Reviewing Software Architectures, and is not typically done as part of the
design process. While that type of documentation comes afterward, informal
documentation, in the form of sketches, should take place during the architecture design.
Sketches can record the structures, elements, relationships between the elements, and the
design concepts used.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[138]

The sketches do not necessarily need to use any formal notation, but they should be clear.
While it's not necessary to sketch everything, at a minimum, you will want to sketch out
important decisions and design elements. These sketches can be done on a whiteboard, on
paper, or using a modeling tool.

Documenting the design by creating sketches during the design process will help you to
create architecture views later. If you already have informal sketches, when the time comes
to create formal documentation, you will find it to be an easier task.

Documenting the design as it occurs will also ensure that you do not forget any design
details when it comes to creating the architecture views. Your architecture will be analyzed
and validated later to ensure that it satisfies functional requirements and quality attribute
scenarios, so it is helpful to record details during design that can then be used to explain
how requirements and quality attributes were satisfied by the architecture design.

If you aren't able to sketch out a part of your design, you'll have to consider the possible
reasons for that. Perhaps it is not well understood, too complex, you haven't put enough
thought into how to communicate it, or there may be parts of it that are unclear to you. If
that is the case, you should revisit the design until you are able to sketch it. If you can
sketch the design created in an iteration effortlessly and clearly, your audience will be able
to understand it.

Documenting the design rationale
Software architecture design involves making many design decisions, and software
architects should document those decisions along with their design rationale. While design
sketches may explain what was designed, they don't give any indication as to the design
rationale.

A design rationale explains the reasons, and justification, behind the decisions that are
made during the design of the software architecture. Design rationale can also include
documentation on what decisions were not made, as well as alternatives that were
considered for decisions that were made. Reasons for rejection can be recorded for each
alternative that was not selected.

Recording design rationale can be useful during the design process, as well as once the
design is complete. Software architects who document their design rationale are afforded
an opportunity to clarify their thoughts and arguments as they capture the design rationale,
which may even expose flaws in their thinking.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[139]

Once the design rationale is documented, anyone who wants to know why a particular
design decision was made, even after some time has passed, can refer to it. Even
individuals who were involved with a design decision, including the software architect,
may forget the rationale behind a particular decision and will be able to refer to the
documentation.

The design rationale should refer to the specific structures that were designed and the
specific requirements that they intended to meet. Some software design tools provide
functionality that can assist the software architect in capturing the design rationale.

A complete design rationale provides a history of the software architecture design process.
There are a number of uses for design rationale, such as for design evaluation, verification,
knowledge transfer, communication, maintenance, documentation, and reuse.

Design rationale for design evaluation
Design rationale can be used to evaluate different software architecture designs and their
design choices. The various designs can be compared with each other, and an
understanding can be gained as to the situations in which one design would be chosen over
another.

Design rationale for design verification
The purpose of software architecture design verification is to ensure that the software
system, as designed, is the software system that was intended. It verifies that the software
architecture meets the requirements, including the quality attributes, and works as
expected. The design rationale can be used as part of the verification.

Design rationale for design knowledge transfer
The design rationale can be used for knowledge transfer to team members, including those
who may join the team later, either during development or after the software goes into its
maintenance phase.

Team members can learn about the design decisions and the reasons behind them by
reviewing the design rationale. It is particularly useful for knowledge transfer when the
original software architect, and others who collaborated on the design of the software
architecture, are no longer available to provide the information in other ways.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[140]

Design rationale for design communication
It will be necessary at different times to communicate the design of the software
architecture to various stakeholders and other individuals. The information provided by
the design rationale adds value to the overall communication.

In addition, the design rationale can be used by those who are reviewing the software
architecture so that they can learn the reasons behind particular design decisions.

Design rationale for design maintenance
During the maintenance phase of a software project, it is helpful to know the design
rationale for the decisions that went into the software architecture design. When a certain
piece of the software needs to be changed for maintenance, the design rationale can assist in
determining what areas of the software will require modifications.

It can also be used to identify weaknesses in the software, and areas of the software that
could be improved. For example, based on certain design decisions, quality attributes may
be enabled or inhibited, and if changes are being considered that would alter those
decisions, team members could be aware of the reasons behind those decisions.

The design rationale will also point out design alternatives that were not chosen, allowing
those considering modifications to either avoid previously rejected design alternatives or to
at least be knowledgeable about the reasons those alternatives were rejected in order to
make an educated decision.

Design rationale for design documentation
The software architecture must be documented, and the design rationale is an important
part of that documentation. If the documentation only shows the design, those looking at it
will know what was designed but won't know why it was designed that way. They also
won't be aware of the alternatives that were considered, and why those alternatives were
rejected.

Design rationale for design reuse
Software architecture reuse involves creating multiple software applications using core
assets, allowing architectural components to be reused across multiple software products.
Organizations seek to take advantage of efficiencies that can be gained when reusing
architectural components to build multiple software products as part of a software product
line.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[141]

Capturing design rationale can facilitate successful architectural reuse. It can help designers
understand what parts of the application can be reused. It may also provide some insight
into where modifications can be made to a component in order to reuse it in the application.
Due to the variation between software products, reusable components are typically
designed with variation points, or places where modifications can be made in order to adapt
the component for use in a particular software product. Understanding the design rationale
will help designers use the component properly, and prevent harmful modifications from
being made.

Using a systematic approach to software
architecture design
If you are going to dedicate some time to designing the architecture of a software system,
and not just let it emerge after implementing features, you should do so in a systematic way.

Software architects need to ensure that the architecture they are designing will satisfy the
architectural drivers, and a systematic approach can assist in accomplishing that goal. In
Designing Software Architectures, A Practical Approach, the following is said about using an
architecture design process:

"The question is, how do you actually perform design? Performing design to ensure that
the drivers are satisfied requires a principled method. By "principled", we refer to a
method that takes into account all of the relevant aspects that are needed to produce an
adequate design. Such a method provides guidance that is necessary to guarantee that your
drivers are satisfied."

Using an established architecture design process will provide you, as the software architect,
with guidance on how to go about designing an architecture that will satisfy functional
requirements and quality attribute scenarios. There are a number of design processes that
can be used for software architecture. Although they differ from each other, including
differences in terminology, they also have some fundamental commonalities.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[142]

A general model of software architecture design
The paper, A general model of software architecture design derived from five industrial approaches,
by Christine Hofmeister, Philippe Kruchten, Robert L. Nord, Henk Obbink, Alexander Ran,
and Pierre America, compared five different architecture design methods to come up with a
general model of architecture design based on the similarities. Having a general model
helps us to understand the types of activities that are typically performed in a software
architecture design process and allows us to compare the strengths and weaknesses of
different processes.

It was found that most architecture design processes involve analyzing architectural
drivers, designing candidate solutions that will satisfy the architectural drivers, and then
evaluating the design decisions and candidate solutions to ensure that they are correct.

The three main design activities that were identified in A general model of software
architecture design derived from five industrial approaches are Architectural Analysis,
Architectural Synthesis, and Architectural Evaluation:

Architectural analysis
During architectural analysis, the problems that the architecture is trying to solve are
identified. These are sometimes referred to as architecturally significant requirements
(ASRs) because they will influence the design of the architecture. Not all of the design
issues that must be considered are requirements though. We must address all of the
architectural drivers, which include design objectives, primary functional requirements,
quality attribute scenarios, constraints, and architectural concerns.

The output of this activity is a set of architectural drivers that will serve as the input to
architectural synthesis.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[143]

Architectural synthesis
The architectural synthesis activity is where solutions are designed on the basis of the set
of architectural drivers that were identified in the architectural analysis activity. It is during
this activity that we leverage design concepts such as architecture patterns, reference
architectures, tactics, and externally developed software, and combine them with the
design of structures, elements, and relationships between the elements. This produces
solutions for the set of architectural drivers.

The output of this activity is one or more candidate solutions for the problems selected.

Architectural evaluation
In the architectural evaluation, the candidate solutions that were designed during
architectural synthesis are evaluated to ensure that they solve the problems that they were
intended for, and that all of the design decisions that were made are correct.

At the conclusion of the architectural evaluation activity, each candidate solution has either
been validated or invalidated. We will cover reviewing software architectures in Chapter
12, Documenting and Reviewing Software Architectures.

Architecture design is an iterative process
Another important similarity found in architecture design is the fact that it is an iterative
process. Designing a software architecture is too complex to address all of the architectural
drivers simultaneously.

The design of the architecture occurs over multiple iterations until all architectural drivers
have been addressed. Each iteration starts by selecting the architectural drivers that will be
considered for that iteration. If candidate solutions have been validated after they have
been evaluated, those design decisions are integrated into the overall architecture.

If there are no more architectural drivers that need solutions, the validated architecture is
complete. If outstanding architectural drivers exist, a new iteration will begin.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[144]

Selecting an architecture design process
Now that we understand the fundamental activities that occur during software architecture
design, which one do we use? There are many different software architecture design
processes. One way that we can compare design processes is to examine the activities and
artifacts of the design process:

What are the activities and artifacts of the design process?
Are there any activities/artifacts that you think are not needed?
Are there any activities/artifacts that you feel are lacking?
What are the techniques and tools of the design process?

If it helps, you can compare the activities and artifacts of the design process with those that
exist in the general model. Some of the activities and artifacts of the design process may
have corresponding ones in the general model, although different names may be used.
There may also be activities and artifacts in the design process that do not have any
corresponding ones in the general model, as well as ones in the general model that do not
exist in the design process.

After doing this type of comparison, you should have an understanding as to what each
design process entails, along with their strengths and weaknesses. This knowledge can be
used to select the one that is most suited to your project.

The software architect can modify a design process to make it more suitable for a project's
needs, although such changes should only be done thoughtfully. If, after analyzing and
selecting a design process, you feel that a particular activity or artifact is not needed, you
could remove it.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[145]

Conversely, if you see that a design process lacks an activity and/or artifact, you can change
the process to include it. You might be able to draw on a technique, tool, or even another
design process to supplement what you feel is missing from the design process you want to
use.

So far, we have been discussing architecture design processes in fairly general terms, so
now let's explore several concrete ones at a high level. Three of the architecture design
processes available to you are ADD, Microsoft's technique for architecture and design, and
the ACDM.

Attribute-driven design (ADD)
Attribute-driven design (ADD) is one of the systematic approaches for designing software
architectures. It is an iterative, organized, step-by-step method that can be followed during
architectural design iterations.

This method pays particular attention to software quality attributes during the design
process. As a result, one of the primary benefits of using ADD is that you begin to consider
quality attributes early in the design process.

Enabling a quality attribute in a software architecture design may affect other quality
attributes. Consequently, trade-offs between quality attributes may be necessary. By
focusing on quality attributes using the ADD method, these types of trade-offs can be
considered at an early stage during the process.

The ADD process is specifically focused on architecture design and, as such, doesn't cover
the entire architectural life cycle. The process doesn't include the gathering of architectural
drivers, documenting the architecture, or evaluating the architecture once it is designed.
However, you can combine ADD with other methods to fill in these gaps.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[146]

ADD is a widely-used method for software architecture design, and has been used
successfully on a variety of software applications. There are eight steps in the attribute-
driven design process:

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[147]

Step 1 – Reviewing inputs
The first step in the ADD process is to review the inputs into the attribute-driven design.
Before the design starts, we want to ensure that we are clear on the overall design problem
we are solving.

The inputs are the architectural drivers that we reviewed earlier:

Design objectives
Primary functional requirements
Quality attribute scenarios
Constraints
Architectural concerns

If the software system is either a brownfield system or it is not the initial iteration for the
architecture design of a greenfield system, there is at least some part of an architecture
already in place. This existing architecture must be considered as part of the input into the
iteration.

Step 2 – Establishing the iteration goal and
selecting inputs to be considered in the iteration
Once inputs are reviewed, one or more design iterations will take place, with each iteration
beginning with Step 2. If you are using an agile methodology, multiple iterations will take
place until the architecture is complete and the design purpose has been accomplished. An
agile methodology is preferred, and is more common, as attempting to provide solutions
for all of the architectural drivers at once can be too difficult.

At the start of each iteration, we want to establish the design goal for that iteration. We
should be able to answer the question, What design issue are we trying to solve in the iteration?
Each goal will be associated with one or more inputs. The inputs, or architectural drivers,
that are relevant to the goal are identified and will be the focus of the iteration.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[148]

Step 3 – Choosing one or more elements of the
system to refine
Based on the iteration goal and the architectural drivers that we want to create a solution
for, we must select the various elements that we want to decompose.

If your project is a greenfield system and this is the first iteration, you begin at the highest
level and start by decomposing the system itself. For any other iteration, the system has
already been decomposed to some degree. You would select one or more of the existing
elements to focus on for this iteration.

Step 4 – Choosing one or more design concepts
that satisfy the inputs considered in the iteration
Once elements have been selected for decomposition, we need to select one or more design
concepts that can be used to meet the iteration goal and satisfy the inputs (architectural
drivers). Design concepts refer to design principles and solutions such as architecture
patterns, reference architectures, tactics, and externally developed software.

Step 5 – Instantiating architectural elements,
allocating responsibilities, and defining
interfaces
Based on the design concepts that can be leveraged for this iteration, analysis is performed
so that details can be provided regarding the responsibilities for the elements being
decomposed, along with the public interfaces of those elements that will be exposed.

Each element being decomposed (parent element) may yield one or more child elements.
By considering the responsibilities of the parent element, we can assign responsibilities to
the various child elements. All of the responsibilities of the parent element are considered,
whether or not they are architecturally significant.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[149]

Step 6 – Sketching views and recording design
decisions
Views should be sketched recording the solution designed so that it can be communicated.
In this step, all of the design decisions that were made during this particular iteration are
documented. This documentation should also include the design rationale.

The artifacts created in this step can simply be sketches and do not have to be the formal,
detailed software architecture views. In the ADD process, the creation of the architecture
views comes later, but the design decisions made in this iteration should be reflected in
sketches that can then be used in the formal architecture views later.

We will explore documenting software architectures in Chapter 12, Documenting and
Reviewing Software Architectures.

Step 7 – Performing analysis of current design
and reviewing the iteration goal and design
objectives
In this final step of a software architecture design iteration, the software architect and other
team members should analyze the current design. The design decisions are analyzed to
ensure that they are correct and satisfy the iteration goal and architectural drivers that were
established for the iteration.

The result of this analysis should determine whether more architecture design iterations
will be necessary.

Step 8 – Iterating if necessary
If it is decided that more iterations are needed, the process should go back to Step 2 for
another iteration. As a software architect, there will be times where you feel more iterations
are necessary, but something will prevent you from conducting more iterations. For
example, the project management team may decide that there is not enough time for more
iterations and that the architecture design process is done.

If no further iterations will take place, the software architecture design is complete.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[150]

Microsoft's technique for architecture and
design
Another example of a systematic approach for designing software architectures is
Microsoft's technique for architecture and design. Like ADD, it is an iterative, step-by-
step method. This process can be used to design the initial architecture as well as to refine it
later, if necessary. There are five steps in the process:

Step 1 – Identifying architecture objectives
The design process begins by identifying the objectives you want to achieve for the
architecture. The purpose of this step is to ensure that the design process has clear
objectives so that the solution focuses on the appropriate problems. Once design iterations
start, we want to ensure that we are clear on the overall design problems that we are
solving.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[151]

The various architectural drivers, such as design objectives, primary functional
requirements, quality attribute scenarios, constraints, and architectural concerns all
combine to form the architecture objectives. The software architect should also consider
who will consume the architecture. The architecture design might be used by other
architects, developers, testers, operations personnel, and management. Both the needs and
the experience levels of the various people who will view and use the architecture design
should be considered during the design process. As with ADD, if the software system has
an existing architecture, either because it is a brownfield system or design iterations have
already taken place, the existing architecture is another consideration.

Step 2 – Identifying key scenarios
Once the design objectives are identified and established, one or more design iterations will
be necessary. Step 1 will only occur once, and each design iteration will begin with Step 2.
Step 2 focuses on identifying key scenarios for the software application.

In this design process, a scenario is defined as a more encompassing user interaction with
the software system, and not just a single use case. Key scenarios are the most important of
these scenarios and are required for the success of the application. Scenarios could be an
issue, an architecturally significant use case (one that is business critical and has a high
impact), or involve an intersection between functional requirements and quality attributes.
Once again, keep in mind that there may be trade-offs with quality attributes, so the
scenarios should take those into consideration.

Step 3 – Creating application overview
In this step, armed with architecture objectives and key scenarios, an application overview
is created. An application overview is what the architecture will look like when it is
complete. An application overview is intended to connect an architecture design with real-
world decisions.

Creating an application overview consists of determining your application type, identifying
deployment constraints, identifying architecture design styles, and determining relevant
technologies.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[152]

Determining your application type
The software architect must determine what type of application is appropriate based on the
objectives and key scenarios. Examples of application types include web, mobile, service,
and Windows desktop applications.

It is possible that a software application may be a combination of more than one type.

Identifying your deployment constraints
When designing a software architecture, among the many constraints that you may have to
consider are constraints related to deployment. You may be required to follow particular
policies of the organization. The infrastructure and target environment of the software
application may be dictated by the organization, and such constraints may be something
that you will have to work around.

The earlier that any conflicts and issues related to constraints can be identified regarding
the software application and the target infrastructure, the easier those issues can be
resolved.

Identifying important architecture design styles
Architecture design styles, also known as architecture patterns, are general solutions to
common problems. Using an architecture style promotes reuse by leveraging a known
solution to a recurring problem.

Identifying the appropriate architecture design style, or a combination of styles, that will be
used in the software application is an important part of creating an application overview.
We will go into detail about various architecture patterns in Chapter 7, Software
Architecture Patterns, and Chapter 8, Architecting Modern Applications.

Determining relevant technologies
At this point, you are ready to select relevant technologies for your project. The decisions
are based on the type of application, which was determined earlier, the architectural styles,
and the key quality attributes.

In addition to technologies specific to the application type (for example, selection of a web
server for a web application), technologies will be needed for categories such as application
infrastructure, workflow, data access, database server, development tools, and integration.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[153]

Step 4 – Identifying key issues
This step of the process involves identifying the important issues you may be facing in the
architecture. These issues may require additional focus because they are areas where
mistakes are most likely to be made.

Key issues typically map in one form or another to either quality attributes or cross-cutting
concerns. We took a look at quality attributes in Chapter 4, Software Quality Attributes, and
will be exploring cross-cutting concerns in Chapter 9, Cross-Cutting Concerns.

Analyzing quality attributes and cross-cutting concerns closely based on the issues you
identify will allow you to know which areas to give extra attention to in your design. The
design decisions that are made as a result should be documented as part of the architecture.

Step 5 – Defining candidate solutions
Once key issues are identified, candidate solutions can be created. Depending on whether
or not this is the first iteration, either an initial architecture is created, or the existing
architecture is refined to include the solutions that were designed in the current iteration.

Once candidate solutions are integrated into the architecture design for the current
iteration, the architecture can be reviewed and evaluated. We will go into further detail on
reviewing software architectures in Chapter 12, Documenting and Reviewing Software
Architectures.

If it is determined that more work is necessary for the architecture design, a new iteration
can begin. The process goes back to Step 2 so that key scenarios can be identified for the
next sprint.

Architecture-centric design method (ACDM)
The architecture-centric design method (ACDM) is an iterative process used to design
software architectures. It is a lightweight method with a product focus and seeks to ensure
that the software architecture maintains a balance between business and technical concerns.
It attempts to make the software architecture the intersection between requirements and the
solution.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[154]

Like all architecture design processes, the ACDM provides guidance to software architects
as they design an architecture. While it covers the complete life cycle of software
architecture, it is not a complete development process. It is designed to fit in with existing
process frameworks though so that it can be used in conjunction with other methods to
cover activities outside of architecture. It does not have to replace an existing process
framework and can complement it instead.

There are some minor variations in the number and naming of the steps involved with the
ACDM, but the process is essentially the same. Let's go over the ACDM, which is a seven-
step process:

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[155]

Step 1 – Discovering architectural drivers
The first step in the ACDM is to meet with stakeholders to determine the architectural
drivers, which include design objectives, primary functional requirements, quality attribute
scenarios, constraints, and architectural concerns. The prioritization of quality attribute
scenarios also takes place in this step.

Step 2 – Establishing project scope
In this step, the architectural drivers established in Step 1 are reviewed. First, consolidation
of the information gathered takes place to remove duplicate architectural drivers.

Next, if any of the architectural drivers gathered are unclear, missing, or incomplete,
additional information will be needed. The same is true of any requirements or quality
attribute scenarios that are not measurable or testable.

If any clarification or additional information is needed, it will be gathered in this step from
the relevant stakeholders.

Step 3 – Creating notional architecture
Using the architectural drivers, a notional architecture is created. It is the first attempt at
designing the architecture. The initial representations of the structures that make up the
architecture are created and documented.

Not a lot of time is typically spent on the notional architecture. The idea is that the
architecture will be refined through multiple iterations until it is complete.

Step 4 – Architectural review
During this step, a review is conducted on the architecture as it currently exists. Reviews
may be conducted internally, externally with stakeholders, or there may even be multiple
review sessions so that both internal and external ones can be conducted.

The purpose of the review is to ensure that all of the design decisions are correct and to
uncover any potential issues or problems with the architecture. For a given design decision,
alternative approaches can be discussed, along with the trade-offs and the rationale behind
the decision, in order to determine whether the best alternative was taken.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[156]

Step 5 – Production go/no-go
Once the architectural review is complete, a decision is made as to whether the architecture
is complete and ready for production, or if further refinement is needed. In the ACDM
context, production refers to implementation, including using the architecture in the detailed
design of elements, coding, integration, and testing.

Any risks identified during the architectural review are considered in the production
go/no-go decision. The decision does not have to be an all-or-nothing one. It is possible that
only parts of the design require further refinement, in which case a portion of the design
can move on to production.

If the production decision is a go, and no further refinements are needed, the process can
skip ahead to production planning, and eventually on to production. However, if the
production decision is a no-go, then the process moves on to Step 6.

Step 6 – Experiment planning
In this step, any experiments that the team feels are necessary are planned. The purpose of
an experiment may be to resolve an issue uncovered during the architectural review, to
gain a greater understanding of one or more architectural drivers, or to improve elements
and modules of the design before they are committed to the overall architecture.

Experiment planning includes solidifying the goals of the experiment, estimating the level
of effort, and assigning the resources that will be needed.

Step 7 – Experimenting with and refining the
architecture
Any experiments that were planned are executed during this step. The results of the
experiments are recorded. Based on the results of the experiment, if the architecture needs
to be refined, it is done during this step.

After the refinement is complete, the process goes back to Step 4 so that another
architectural review can take place.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[157]

Production planning and production
Once architecture design iterations are complete, and the architecture is ready to move into
production, production planning is conducted. Once again, production in the ACDM context
refers to using the architecture in implementation.

Given this context, production planning involves planning the design and development of
elements, scheduling the work, and assigning tasks to resources. The project management
team creates plans for the work, and bases them, in part, on the architecture.

Once the architecture can be moved to production, it can be used by development teams for
the detailed design of elements, coding, integration, and testing.

Architecture development method (ADM)
The architecture development method (ADM) is a step-by-step software architecture
design approach specifically made for enterprise architectures. The ADM was created from
the contributions of many software architecture practitioners.

Like the other architecture design methods that we have covered, the ADM is an iterative
process. The process as a whole is iterative, but it is also iterative between phases and
within a single phase. Each iteration is an opportunity to revisit scope, the level of detail to
be defined, schedules, and milestones.

The Open Group Architecture Framework
(TOGAF)
The ADM is a core part of The Open Group Architecture Framework (TOGAF), which is a
framework for enterprise architecture. TOGAF provides a detailed method, the ADM,
along with a set of tools for developing enterprise architectures.

TOGAF is maintained by The Open Group, which is a global industry consortium that
focuses on using open and vendor-neutral technology standards to help organizations
achieve business objectives.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[158]

TOGAF architecture domains
Four standard architecture areas, or architecture domains, for enterprise architecture are
defined by TOGAF. They are business, data, applications, and technology architectures.
These domains are sometimes referred to as the BDAT domains.

All four of these architecture domains are considered during the ADM and we will explore
them in more detail when we go over the various phases of the ADM.

TOGAF documentation
The TOGAF documentation is broken up into the following seven sections:

Part I – Introduction: The first part is an introduction to the concepts of
enterprise architecture, the TOGAF approach, and definitions of relevant terms
used in TOGAF.
Part II – Architecture development method: This section details the architecture
development method (ADM), which is the core of TOGAF. We will be focusing
our attention on the ADM part of the TOGAF.
Part III – ADM guidelines and techniques: This part of the documentation
provides guidelines and techniques for applying TOGAF and the ADM.
Part IV – Architecture content framework: In this part, information is provided
on the TOGAF content framework, including the architectural artifacts and
deliverables that are part of the process.
Part V – Enterprise continuum and tools: This section covers the architecture
repository for an enterprise, including the categorization and storage of
architecture artifacts.
Part VI – TOGAF reference models: In this section, various architectural
reference models are provided, including the TOGAF Foundation Architecture
and the Integrated Information Infrastructure Reference Model (III-RM).
Part VII – Architecture capability framework: The final part provides guidelines
on establishing and operating an enterprise architecture capability within an
enterprise, including processes, skills, roles, and responsibilities.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[159]

Phases of the ADM
The architecture development method consists of multiple phases. There is a preliminary
phase in which the organization prepares for a successful software architecture
implementation. After this preliminary phase, there are eight phases to the process:

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[160]

Each phase continuously checks with requirements to ensure that they are being met.
Organizations can modify or extend the process to meet their needs, and it is usable with
the deliverables of other frameworks if it is decided that those deliverables are more
suitable.

Phase A – Architecture vision
In this step of the ADM, the team defines the overall vision for the enterprise architecture,
including its capabilities and business value. The team agrees on items such as scope,
business goals, business drivers, constraints, requirements, roles, responsibilities, and
scheduling. These decisions are documented in the Statement of Architecture Work, which
is a deliverable for this phase. The document typically contains the following:

Architecture project request and background information
Project description and scope of the architecture
An overview of the architecture vision
Change of scope procedures
Roles, responsibilities, and deliverables for the project
Details on the acceptance criteria and procedures
Project plan and schedule

Phase B – Business architecture
Business architecture is one of the four architecture domains defined in TOGAF. The
business architecture focuses on the business and/or service strategies of the organization,
along with its business environment. An understanding of the business architecture is a
prerequisite to perform architecture work on the other three domains defined in TOGAF
(data, application, and technology).

The goal of this phase is to determine the target business architecture for how the enterprise
achieves its business objectives and its strategic drivers. In order to create a roadmap on
how to reach the target state, the following four steps are undertaken:

Gain an understanding of the current state of the architecture1.
Refine and validate the target state of the architecture2.
Determine the gap that exists between the current and target states of the3.
architecture
Create a roadmap to transition between the current and target architecture states4.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[161]

Phase C – Information systems architectures
Data and application architecture are two of the other architecture domains defined in
TOGAF. The data architecture focuses on an organization's data and how it is managed,
while application architecture involves the enterprise's software applications.

The results from the architecture vision and business architecture phases are used to
determine the architectural changes that will be necessary to an enterprise's data and
application architectures.

As was the case with Phase B, the current and target states of the architecture are compared
so as to determine the gap between the two. This allows for an architecture roadmap to be
created for the candidate application and data components that will be needed to bridge the
gap.

Phase D – Technology architecture
Technology architecture, one of the other architecture domains defined in TOGAF, involves
the enterprise's infrastructure components. This includes the hardware and software
necessary to support the enterprise's business, data, and application architectures.

The goal of this phase is to develop the target technology architecture that will support the
enterprise's solutions. An assessment of the enterprise's current infrastructure capabilities is
completed and compared with the desired target state so that the gap between them can be
identified. From there, a roadmap of the target state for the technology architecture can be
created along with the candidate components.

Phase E – Opportunities and solutions
This phase focuses on how to deliver the target architecture as we move from a conceptual
view of the target architecture toward implementation. The roadmaps created in Phase B,
Phase C, and Phase D are consolidated into an overall architecture roadmap. The candidate
solutions that were created in the previous phases are organized into high-level candidate
work packages.

The overall architecture roadmap, which includes all of the gaps between the current and
target states of the architecture, is used to determine the best approach on how to deliver
the target architecture.

If an incremental approach is to be taken, transition architectures are identified so that
business value continues to be delivered.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[162]

Phase F – Migration planning
The overall architecture roadmap and the candidate work packages are used to plan the
implementation of the architecture. The software architect works with the enterprise's
project and program management teams to determine existing or new projects that can be
used for the work.

An enterprise's existing processes for change and project management can be used to plan
the necessary initiatives.

Phase G – Implementation governance
Implementation governance, along with the next phase, architecture change management,
runs in parallel with the implementation of the architecture. The development of the
architecture takes place using the enterprise's existing software development process.

This phase ensures that software architects stay engaged during implementation by
assisting and reviewing the development work. Software architects must ensure that the
architecture being implemented is achieving the architecture vision.

Phase H – Architecture change management
During implementation, issues may arise that require decisions to be made. It may be
found that changes are necessary to the candidate solutions.

Software architects are involved with the enterprise's change management process to make
decisions regarding proposed changes. Changes to the architecture must be managed and
there must be a continuous focus on ensuring that the architecture meets requirements and
stakeholder expectations.

Tracking the progress of the software
architecture's design
During the software architecture design process, you will want to keep track of the design's
progress. Keeping track of progress enables you to know how much of the design work is
complete, and how much of it remains. The remaining work can be prioritized, assisting
software architects in determining what should be worked on next. In addition to tracking
progress, it serves as a reminder of design issues that are still outstanding, so that nothing
is forgotten.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[163]

The technique that management will want to use to track progress really depends on your
project, software development methodology, and the organization. If you are using an agile
methodology such as Scrum, you may be using product and sprint backlogs to track
progress.

Using a backlog to track the architecture design
progress
A product backlog contains a complete list of the features and bugs of the product. You
should consider creating a product backlog that is specific to the software architecture of
the project, which is separate from the other product backlog. An architecture product
backlog would contain items, design issues, design decisions that need to be made, and
ideas that are specific to the architecture design.

Prior to each sprint, sprint planning takes place. The team selects items from the product
backlog that they will work on and complete during the upcoming sprint. Once tasks can
be created for the product backlog items, they can be assigned to a resource and then
tracked for progress. Items from the product backlog that get selected for a sprint are then
moved to the sprint backlog. Once an item is completed, it can be removed from the
backlog.

Before sprint planning takes place though, the product backlog items should be prioritized,
as the prioritization may affect what gets selected for a particular sprint.

Prioritizing the backlog
The list of features and bugs in the product backlog should be prioritized by the team,
which assists with project planning so that teams know which items to focus on first.

Backlog prioritization is not something that occurs just once. As the architecture backlog
changes, priorities may need to change as well. You can revisit the prioritization of
architecture backlog items as many times as necessary.

Product backlog items should be linearly ordered based on criteria. One set of criteria that
has been used in practice to prioritize backlog items is called the DIVE criteria.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[164]

DIVE criteria
DIVE is an acronym that stands for the types of criteria that are used to prioritize product
backlog items. It focuses on Dependencies, to Insure against risks, business Value, and
estimated Effort as the factors used to determine priority.

Dependencies
Some product backlog items will be dependent on others, and therefore those dependencies
will need to be completed first. For example, if item A depends on item B, B would be
prioritized higher than item A.

Insure against risks
When prioritizing backlog items, you want to insure against risks, which include both
business and technical risks. Taking potential risks into consideration may lead the team to
prioritize a backlog item higher or lower when compared to other backlog items.

Business value
The business value of a product backlog item is an important criterion for prioritization.
Product backlog items with greater levels of business value may be deemed a higher
priority. The input of relevant stakeholders can help to determine the business value of a
product backlog item.

Estimated effort
The estimated level of effort for a product backlog item may be a factor when prioritizing
work. This may be due to factors such as scheduling or resource availability. There may be
cases where a product backlog item has a large estimated effort, and the team wants to
tackle the item sooner rather than later to ensure that it will be completed in time.

Active and dynamic architecture backlogs
As with any product backlog, the architecture backlog is not static and will evolve as the
architecture design takes place. As architecture design iterations are completed, new
architectural drivers may be uncovered, necessitating the need for new items to be added to
the backlog.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[165]

Another reason that items may be added to the architecture backlog is when issues are
discovered with the architecture. When the design is reviewed, a problem may become
apparent, requiring further work to be done.

As architectural design decisions are made, it may cause the creation of new architecture
backlog items. When a design decision is made, new concerns may arise from that decision.
For example, if it is decided that the application will be a web application, backlog items
related to security, session management, and performance that are specific to web
applications may need to be added to the architecture backlog if they did not already exist.
Changes to the architecture backlog may prompt you to revisit the priorities of the backlog
items.

The architecture backlog should be made available to anyone who may need to be aware of
the design's progress. If you do have separate backlogs for the architecture and the rest of
the project, keep in mind that the audience for the two backlogs may be different. It really
depends on the project and the level of involvement and transparency that exists between
the project team and other stakeholders involved with the project.

In some cases, clients may have access to the product backlog to track functionality, but the
team may want to keep the architecture backlog private.

Summary
Software architecture design plays a critical part in the creation and success of software
architectures. At its core, architecture design involves making design decisions to produce
solutions to design problems. The result is an architecture design that can be validated,
formally documented, and eventually used by development teams.

There are two main approaches to architecture design, the top-down and bottom-up
approaches. We examined situations in which one would be used over the other and
learned how a combination of the two approaches often works best.

Architectural drivers, which are the inputs into the architecture design process, guide the
architecture design. They include design objectives, primary functional requirements,
quality attribute scenarios, constraints, and architectural concerns.

Designing a software architecture can be challenging, but we can leverage design concepts,
such as software architecture patterns, reference architectures, tactics, and externally
developed software, to assist with the design of solutions.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing Software Architectures Chapter 5

[166]

While formal documentation of an architecture does not need to occur during the design
process, documenting, such as sketching the design and recording the design rationale,
should take place.

Following an architecture design process helps to guide software architects with their
design. There are a number of architecture design processes that are available to use, so
you'll have to do some research in order to select a process that will work best for your
project. Architecture design processes can be modified and supplemented with other
techniques and processes to fill in any gaps with the process that you want to use.

A way of prioritizing and tracking the progress of architecture work should be put into
place, such as having a backlog specific to architecture.

In the next chapter, we will explore some of the principles and best practices of software
development. Some of them can be applied to software architecture, while others may be
concepts that you will want to communicate to your team and encourage them to use in
their implementations.

Ingeno, J. (2018). Software architect's handbook : Become a successful software architect by implementing effective architecture concepts. Packt Publishing, Limited.
Created from senecac on 2022-09-01 14:56:08.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

