
 Design is not just what it looks like and feels like. Design is how it works.

 —Steve Jobs

 Design is easy. All you do is stare at the screen until drops of blood form on
your forehead.

 —Marty Neumeier

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ The purpose of high‐level design

➤ How a good design lets you get more work done in less time

➤ Specifi c things you should include in a high‐level design

➤ Common software architectures you can use to structure an application

➤ How UML lets you specify system objects and interactions

 High‐level design provides a view of the system at an abstract level. It shows how the major
pieces of the fi nished application will fi t together and interact with each other.

 A high‐level design should also specify assumptions about the environment in which the
fi nished application will run. For example, it should describe the hardware and software you
will use to develop the application, and the hardware that will eventually run the program.

 The high‐level design does not focus on the details of how the pieces of the application will
work. Those details can be worked out later during low‐level design and implementation.

 Before you start learning about specifi c items that should be part of the high‐level design,
you should understand the purpose of a high‐level design and how it can help you build an
application.

 5

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

88 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

THE BIG PICTURE

You can view software development as a process that chops up the system into smaller and smaller
pieces until the pieces are small enough to implement. Using that viewpoint, high‐level design is the
fi rst step in the chopping up process.

The goal is to divide the system into chunks that are self‐contained enough that you could give them
to separate teams to implement.

ADDING PEOPLE

Breaking an existing task into smaller pieces is one of the few ways you can
sometimes add people to a project and speed up development.

Adding new people to the same old tasks usually doesn’t help and often actually slows
development as the new people get up to speed and get in each other’s way. (It can
feel like you’re in a leaky lifeboat with a single bucket and more people are climbing
aboard. You may enjoy the company, but their extra weight will make you sink faster.)

However, if you can break a large task into smaller pieces and assign them to
different people, you may speed things up a bit. The new people still need time
come up to speed, so this won’t always help, but at least people won’t trip over each
other trying to perform the same tasks.

PARALLEL IMPLEMENTATION

Suppose you’re building a relatively simple application to record the results of Twister
games for a championship. It needs to store the names of the players in each match,
the date and time they played, and the order in which they fell over during play.

You might break this application into two large pieces: the database and the user
interface. You could then assign those two pieces to different groups of developers
to implement in parallel.

(You’ll see in the rest of this chapter that there are actually a lot of other pieces you
might want to specify even for this simple application.)

There are a lot of variations on this basic theme. On a small project, for example, the project’s
pieces might be small enough that they can be handled by individual developers instead of teams.

In a large project, the initial pieces might be so big that the teams will want to create their own
medium‐level designs that break them into smaller chunks before trying to write any code. This can
also happen if a piece of the project turns out to be harder than you had expected. In that case, you
may want to break it into smaller pieces and assign them to different people.

In some projects, you may want to assign multiple pieces of the project to a single team, particularly
if the pieces are closely related. For example, if the pieces pass a lot of data back and forth, it will
be helpful if the people building those pieces work closely together. (Multitier architectures, which

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

What to Specify ❘ 89

are described in the “Client/Server” section later in this chapter, can help minimize this sort of
interaction.)

 Another situation in which this kind of close cooperation is useful is when several pieces of the
application all work with the same data structure or with the same database tables. Placing the data
structure or tables under the control of a single team may make it easier to keep the related pieces
synchronized.

 WHAT TO SPECIFY

 The stages of a software engineering project often blur together, and that’s as true for high‐
level design as it is for any other part of development. For example, suppose you’re building an
application to run on the Windows phone platform. In that case, the fact that your hardware
platform is Windows phones should probably be in the requirements. (Although you may want to
add extra details to the high‐level design, such as the models of phones that you will test.)

 Exactly what you should specify in the high‐level design varies somewhat, but some things are
constant for most projects. The following sections describe some of the most common items you
might want to specify in the high‐level design.

 Security
 The fi rst thing you see when you start most applications is a login screen. That’s the fi rst obvious
sign of the application’s security, but it’s actually not the fi rst piece. Before you even log in to the
application, you need to log in to the computer.

 Your high‐level design should sketch out all the application’s security needs. Those needs may
include the following:

➤ Operating system security—This includes the type of login procedures, password expiration
policies, and password standards. (Those annoying rules that say your password must
include at least one letter, one number, one special character like # or %, and three Egyptian
hieroglyphs.)

➤ Application security—Some applications may rely on the operating system’s security and not
provide their own. Others may use the operating system’s security to make the user reenter
the same username and password. Still others may use a separate application username and
password. Application security also means providing the right level of access to different
users. For example, some users might not be allowed access to every part of the system. (I’ll
say more about this in the section “User Access” later in the chapter.)

➤ Data security—You need to make sure your customer’s credit card information doesn’t fall
into the hands of Eastern European hackers.

➤ Network security—Even if your application and data are secure, cyber banditos might steal
your data from the network.

➤ Physical security—Many software engineers overlook physical security. Your application
won’t do much good if the laptop it runs on is stolen from an unlocked offi ce.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

90 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 All these forms of security interact with each other, sometimes in non‐obvious ways. For example,
if you reset passwords too often, users will pick passwords that are easier to remember and possibly
easier for hackers to guess. You could add your name to the month number (Rod1 for January,
Rod2 for February, and so forth), but those would be easy to guess. If you make the password rules
too strict (requiring two characters from each row of the keyboard), users may write their passwords
down where they are easy to fi nd.

 Physical security also applies to passwords. I’ve seen large customer service environments in
which users often needed manager approval for certain kinds of common operations. In fact,
those overrides were so common that the manager didn’t have time to handle them and get any
other work done. The solution they adopted was to write the manager’s username and password
on a whiteboard at the front of the room so that everyone could use it to perform their own
overrides.

 The password was insecure, so any hacker who got into the room could do just about anything with
the system. (Fortunately, the room had no windows and was diffi cult to get into without the right
badge and passwords.)

 This also meant that any user could impersonate the manager and do just about anything. If that’s
the case, why bother having user permissions?

 If you need to make 50 exceptions per day, then they’re not actually exceptions. The solution would
have been to not require manager approval for such a common task. Then the manager could have
kept her password private and used overrides only for truly important stuff.

 Hardware
 Back in the old days when programmers worked by candlelight on treadle‐powered computers,
hardware options were limited. You pretty much wrote computers for large mainframes or desktop
computers. You had your pick of a few desktop vendors, and you could pick Windows or Macintosh
operating systems, but that was about it.

 These days you have a lot more choices and you need to specify the ones that you’ll be using. You
can build systems to run on mainframes (yes, they still exist), desktops, laptops, tablets, and phones.
Mini‐computers act sort of as a mini‐mainframe that can serve a handful of users. Personal Digital
Assistants (PDAs) are small computers that are basically miniature tablets.

 Wearable devices include such gadgets as computers strapped to the wearer’s wrist (sort of like
a PDA with a wrist strap and possibly extra keys and buttons), wristbands, bracelets, watches,
eyeglasses, and headsets.

 Additional hardware that you need to specify might include the following:

➤ Printers

➤ Network components (cables, modems, gateways, and routers)

➤ Servers (database servers, web servers, and application servers)

➤ Specialized instruments (scales, microscopes, programmable signs, and GPS units)

➤ Audio and video hardware (webcams, headsets, and VOIP)

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

What to Specify ❘ 91

 With all the available options (and undoubtedly many more on the way), you need to specify the
hardware that will run your application. Sometimes, this will be relatively straightforward. For
example, your application might run on a laptop or in a web page that could run on any web‐
enabled hardware. Other times the hardware specifi cation might include multiple devices connected
via the Internet, text messages, a custom network, or by some other method.

EXAMPLE Selecting a Hardware Platform

 Suppose you’re building an application to manage the fl eet of dog washing vehicles run by The
Pampered Poodle Emergency Dog Washing Service. When a customer calls in to tell you Fifi ran afoul
of a skunk, you dispatch an emergency dog-washer to the scene.

 In this case, your drivers might access the system over cell phones. A desktop computer back at the
offi ce would hold the database and provide a user interface to let you do everything else the business
needs such as logging customer calls, dispatching drivers, printing invoices, tracking payments, and
ordering doggy shampoo.

 For this application, you would specify the kind of phones the drivers will use (such as Windows, iOS,
or Android), the model of the computer used to hold the database and business parts of the application,
and the type of network connectivity the application will use. (Perhaps the database desktop serves data
on the Internet and the phones download data from there.)

 Another strategy would be to have the desktop serve information to the drivers as web pages. Then the
drivers could use any web‐enabled device (smartphone, tablet, Google Glass) to view their assignments.

 User Interface
 During high‐level design, you can sketch out the user interface, at least at a high level. For example,
you can indicate the main methods for navigating through the application.

 Older‐style desktop applications use forms with menus that display other forms. Often the user
can display many forms at the same time and switch between them by clicking with the mouse (or
touching if the hardware has a touch screen).

 In contrast, newer tablet‐style applications tend to use a single window (that typically covers the
entire tablet, or whatever hardware you’re using) and buttons or arrows to navigate. When you click
a button, a new window appears and fi lls the device. Sometimes a Back button lets you move back
to the previous window.

 Whichever navigational model you pick, you can specify the forms or windows that the application
will include. You can then verify that they allow the user to perform the tasks defi ned in the
requirements. In particular, you should walk through the user stories and use cases and make sure
you’ve included all the forms needed to handle them.

 In addition to the application’s basic navigational style, the high‐level user interface design can
describe special features such as clickable maps, important tables, or methods for specifying system
settings (such as sliders, scrollbars, or text boxes).

 This part of the design can also address general appearance issues such as color schemes, company
logo placement, and form skins.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

92 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

You don’t need to specify every label and text box for every form during high‐level user interface
design. You can handle that during low‐level design and implementation. (Often the controls you
need follow from the database design anyway, so you can sometimes save some work if you do the
database design fi rst. Some tools can even use a database design to build the fi rst version of the
forms for you.)

Internal Interfaces
When you chop the program into pieces, you should specify how the pieces will interact. Then the
teams assigned to the pieces can work separately without needing constant coordination.

It’s important that the high‐level design specifi es these internal interactions clearly and
unambiguously so that the teams can work as independently as possible. If two teams that need
to interact don’t agree on how that interaction should occur, they can waste a huge amount of
time. They may waste time squabbling about which approach is better. They will also waste time
if one team needs to change the interface and that forces the other team to change its interface,
too. The problem increases dramatically if more than two teams need to interact through the same
interface.

FOLLOW EXISTING PRACTICES

Most users have a lot of experience with previous applications, and those
applications follow certain standardized patterns. For example, desktop
applications typically have menus that you access from a form’s title bar. The menus
drop down below and submenus cascade to the right. That’s the way Windows
applications have been handling menus for decades and users are familiar with how
they work.

If your application sticks to a similar pattern, users will feel comfortable with the
application with little extra training. They already know how to use menus, so they
won’t have any trouble using yours. Instead they can concentrate on learning how
to use the more interesting pieces of your system.

Now suppose your application changes this kind of standard interaction. Perhaps
you access the menus by clicking a little icon on the right edge of the toolbar and
then menus cascade out to the left instead of the right. Or perhaps there are no
menus, just panels fi lled with icons you can click to open new forms. In that case,
users will need to learn how to use your new system. That will at least lead to some
unnecessary confusion, and it might create a lot of annoyance for the users.

(I use one tool in particular, which I won’t name, that for some reason thinks it
knows a better way to handle menus, toolbars, and toolboxes. It’s frustrating,
incredibly annoying, and sometimes leads to major outbreaks of swearing.)

Unless you have a good reason to change the way most applications already work,
stick with what the users already know.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

What to Specify ❘ 93

 It’s worth spending some extra time to defi ne these sorts of internal interfaces carefully before
developers start writing code. Unfortunately, you may not be able to defi ne the interfaces before
writing at least some code. In that case, you may need to insulate two project teams by defi ning a
temporary interface. After the teams have written enough code to know what information they need
to exchange, they can defi ne the fi nal interface.

 DEFERRED INTERFACES

 I worked on one project where two teams needed to pass a bunch of information
back and forth. Of course, at the beginning of the project, neither team had written
any code to work with the other team, so neither team could call the other. We also
weren’t sure what data the two teams would need to pass, so we couldn’t specify
the interface with certainty.

 To get both teams working quickly, the high‐level design specifi ed a text fi le format
that the teams could use to load test data. Instead of calling each other’s code,
the teams could read data from a test data fi le. They were also free to modify the
formats of their fi les as their needs evolved.

 After several months of work, the two teams had written code to process the data
and their needs were better defi ned. At that point, they agreed on a format for
passing data and switched from loading data from data fi les to actually calling each
other’s code.

 It would have been more effi cient to have defi ned the perfect interface at the
beginning during high‐level design, but that wasn’t an option. Using text fi les to act
as temporary interfaces allowed both teams to work independently.

 (The multitier design described in the “Architecture” section later in this chapter
does something similar.)

 External Interfaces
 Many applications must interact with external systems. For example, suppose you’re building a
program that assigns crews for a large chartered fi shing company. The application needs to assign
a captain, fi rst mate, and cook for each trip. Your program needs to interact with the existing
employee database to get information about crew members. (You don’t want to assign a boat three
cooks and no captain.) You might also need to interact with a sales program that lets salespeople
book fi shing trips.

 In a way, external interfaces are often easier to specify than internal ones because you usually don’t
have control over both ends of the interface. If your application needs to interact with an existing
system, then that system already has interface requirements that you must meet.

 Conversely, if you want future systems to interface with yours, you can probably specify whatever
interface makes sense to you. Systems developed later need to meet your requirements. (Try to make
your interface simple and fl exible so that you don’t get fl ooded with change requests.)

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

94 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

Architecture
 An application’s architecture describes how its pieces fi t together at a high level. Developers use
a lot of “standard” types of architectures. Many of these address particular characteristics of the
problem being solved.

 For example, rule‐base systems are often used to handle complex situations in which solving a
particular problem can be reduced to following a set of rules. Some troubleshooting systems use
this approach. You call in because your computer can’t connect to the Internet, and a customer rep
from some distant time zone asks you a sequence of questions to try to diagnose the problem. The
rep reads a question off a computer screen, you answer, and the rep clicks the corresponding button
to get to the next question. Rules inside the rep’s diagnostic system decide which question to give
you next.

 Other architectures attempt to simplify development by reducing the interactions among the
pieces of the system. For example, a component‐based architecture tries to make each piece
of the system as separate as possible so that different teams of developers can work on them
separately.

 The following sections describe some of the most common architectures.

Monolithic
 In a monolithic architecture , a single program does everything. It displays the user interface,
accesses data, processes customer orders, prints invoices, launches missiles, and does whatever else
the application needs to do.

 This architecture has some signifi cant drawbacks. In particular, the pieces of the system are tied
closely together, so it doesn’t give you a lot of fl exibility. For example, suppose the application stores
customer address data and you later need to change the address format. (Perhaps you add a fi eld to
hold suite numbers.) Then you also need to change every piece of code that uses the address. This
may not be too hard, but it means the programmers working on related pieces of code must stop
what they’re doing and deal with the change before they can get back to their current tasks. (The
multitier architectures described in the next section handle this better, allowing the different teams
of developers to work more independently.)

 A monolithic architecture also requires that you understand how all the pieces of the system fi t
together from the beginning of the project. If you get any of the details wrong, the tight coupling
between the pieces of the system makes fi xing them later diffi cult.

 Monolithic architectures do have some advantages. Because everything is built into a single
program, there’s no need for complicated communication across networks. That means you don’t
need to write and debug communication routines; you don’t need to worry about the network going
down; and you don’t need to worry about network security. (Well, you still need to worry about
some hacker sneaking in through your network and attacking your machines, but at least you don’t
need to encrypt messages sent between different parts of the application.)

 Monolithic architectures are also useful for small applications where a single programmer or team is
working on the code.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

What to Specify ❘ 95

 Client/Server
 A client/server architecture separates pieces of the system that need to use a
particular function (clients) from parts of the system that provide those functions
(servers). That decouples the client and server pieces of the system so that
developers can work on them separately.

 For example, many applications rely on a database to hold information about
customers, products, orders, and employees. The application needs to display that
information in some sort of user interface. One way to do that would be to
integrate the database directly into the application. Figure 5-1 shows this situation
schematically.

 One problem with this design is that multiple
users cannot use the same data. You can fi x
that problem by moving to a two‐tier
architecture where a client (the user interface)
is separated from the server (the database).
Figure 5-2 shows this design. The clients and
server communicate through some network
such as a local area network (LAN), wide area
network (WAN), or the Internet.

 In this example, the client is the user interface
(two instances of the same program) and
the server is a database, but that need not
be the case. For example, the client could be a program that makes
automatic stock purchases, and the server could be a program that
scours the Internet for information about companies and their stocks.

 The two‐tier architecture makes it easier to support multiple clients
with the same server, but it ties clients and servers relatively closely
together. The clients must know what format the server uses, and if
you change the way the server presents its data, you need to change
the client to match. That may not always be a big problem, but it can
mean a lot of extra work, particularly in the beginning of a project
when the client’s and server’s needs aren’t completely known.

 You can help to increase the separation between the clients and server
if you introduce another layer between the two to create the three‐
tier architecture , as shown in Figure 5-3 .

 In Figure 5-3 , the middle tier is separated from the clients and the
server by networks. The database runs on one computer, the middle
tier runs on a second computer, and the instances of the client run on
still other computers. This isn’t the only way in which the pieces of
the system can communicate. For example, in many applications the
middle tier runs on the same computer as the database.

User
Interface

Database

 FIGURE 5-1: An
application can
directly hold its
own data.

DatabaseNetwork

User
Interface

User
Interface

 In a two‐tier architecture, the client is
separate from the server.

Middle Tier

User
Interface

User
Interface

Database

Network

Network

 FIGURE 5-3: A three‐tier
architecture separates clients
and servers with a middle tier.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

96 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

c05.indd 96 6/09/2018 6:31 PM

In a three‐tier architecture, the middle tier provides insulation between the clients and server. In
this example, it provides an interface that can map data between the format provided by the server
and the format needed by the client. If you need to change the way the server stores data, you need
to update only the middle tier so that it translates the new format into the version expected by the
client.

Conversely, if the client’s data needs change, you can modify the middle tier to insert fake data until
you have a chance to update the server to provide the actual data.

The separation provided by the middle tier lets different teams work on the client and server without
interfering with each other too much.

In addition to providing separation, a middle tier can perform other actions that make the data
easier to use by the client and server. For example, suppose the client needs to display some sort
of aggregate data. Perhaps Martha’s Musical Mechanisms needs to display the total number of
carillons sold by each employee for each of the last 12 quarters. In that case, the server could store
the raw sales data, and the middle tier could aggregate the data before sending it to the client.

 TIER TERMINOLOGY

 Sometimes, the client tier is called the presentation tier (because it presents
information to the user); the middle tier is called the logic tier (because it contains
business logic such as aggregating data for the presentation tier); and the server tier
is called the data tier (particularly if all it does is provide data).

You can defi ne other multitier architectures (or N‐tier architectures) that use more than three tiers s
if that would be helpful. For example, a data tier might store the data, a second tier might calculate
aggregates and perform other calculations on the data, a third tier might use artifi cial intelligence
techniques to make recommendations based on the second tier’s data, and a fourth tier would be a
presentation tier that lets users see the results.

 BEST PRACTICE

 Multitier architectures are a best practice, largely because of the separation they
provide between the client and server layers. Most applications don’t use more than
three tiers.

Component‐Based
In component‐based software engineering (g CBSE), you regard the system as a collection of loosely
coupled components that provide services for each other. For example, suppose you’re writing a
system to schedule employee work shifts. The user interface could dig through the database to
see what hours are available and what hours an employee can work, but that would tie the user
interface closely to the database’s structure.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

What to Specify ❘ 97

 An alternative would be to have the user interface ask
components for that information, as shown in Figure 5-4 . (UML
provides a more complex diagram for services that is described in
the section “UML” later in this chapter.)

 The Assign Employee Hours user interface component would
use the Shift Hours Available component to fi nd out what hours
were not yet assigned. It would use the Employee Hours Available
component to fi nd out what hours an employee has available. After
assigning new hours to the employee, it would update the other
two components so that they know about the new assignment.

 A component‐based architecture decouples the pieces of code
much as a multitier architecture does, but the pieces are all contained within the same executable
program, so they communicate directly instead of across a network.

 Service‐Oriented
 A service‐oriented architecture (SOA) is similar to a component‐based architecture except the pieces
are implemented as services. A service is a self‐contained program that runs on its own and provides
some kind of service for its clients.

 Sometimes, services are implemented as web services . Those are simply programs that satisfy certain
standards, so they are easy to invoke over the Internet.

Assign
Employee

Hours
Employee

Hours
Available

Shift
Hours

Available

 FIGURE 5-4: In a component‐
based architecture, components
help decouple pieces of code.

 DEFINING SOA

 Some big software vendors such as IBM and Oracle also defi ne Service Component
Architecture (SCA). This is basically a set of specifi cations for SOA defi ned by those
companies.

 Data‐Centric
Data‐centric or database‐centric architectures come in a variety of fl avors that all use data in some
central way. The following list summarizes some typical data‐centric designs:

➤ Storing data in a relational database system. This is so common that it’s easy to think of as a
simple technique for use in other architectures rather than an architecture of its own.

➤ Using tables instead of hard‐wired code to control the application. Some artifi cial intelligence
applications such as rule‐based systems use this approach.

➤ Using stored procedures inside the database to perform calculations and implement business
logic. This can be a lot like putting a middle tier inside the database.

 Event‐Driven
 In an event‐driven architecture (EDA), various parts of the system respond to events as they occur.
For example, as a customer order for robot parts moves through its life cycle, different pieces of
the system might respond at different times. When the order is created, a fulfi llment module might

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

98 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

notice and print a list of the desired parts and an address label. When the order has been shipped,
an invoicing module might notice and print an invoice. When the customer hasn’t paid the invoice
for 30 days, an enforcement module might notice and send RoboCop to investigate.

Rule‐Based
A rule‐based architecture uses a collection of rules to decide what to do next. These systems are
sometimes called expert systems or knowledge‐based systems .

The troubleshooting system described earlier in this chapter uses a rule‐based approach.

Rule‐based systems work well if you can identify the rules necessary to get the job done. Sometimes,
you can build good rules even for complicated systems; although that can be a lot of work.

Rule‐based systems don’t work well if the problem is poorly defi ned so you can’t fi gure out what
rules to use. They also have trouble handling unexpected situations.

ROTTEN RULES

For several years I had a fairly odd network connection leading directly to
my phone company’s central offi ce. One day it didn’t work, so I called tech
support, and the service rep started working through his troubleshooting rules.
Unfortunately, the phone company hadn’t offered my type of service for several
years, so the rules didn’t cover it.

Eventually, the rep reached a rule that asked me to unplug my modem and reconnect
it. I explained that the modem was in the central offi ce and that unplugging anything
on my end would also disconnect my phone. The rules didn’t give him any other
options, so he insisted. I unplugged my cable and predictably the phone call dropped.

I called back, got a different rep who was a little better at thinking outside of the rules,
and we discovered (as I had suspected) that the problem was at the central offi ce.

Rule‐based systems are great for handling common simple scenarios, but when they encounter
anything unexpected they’re quite useless. For that reason, you should always give the user a way to
handle special situations manually.

Distributed
In a distributed architecture , different parts of the application run on different processors and may
run at the same time. The processors could be on different computers scattered across the network,
or they could be different cores on a single computer. (Most modern computers have multiple cores
that can execute code at the same time.)

Service‐oriented and multitier architectures are often distributed, with different parts of the system
running on different computers. Component‐oriented architectures may also be distributed, with
different components running on different cores on the same computer.

In general, distributed applications can be extremely confusing and hard to debug. For
example, suppose you’re writing an application that sells offi ce supplies such as staples, paper

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

What to Specify ❘ 99

clips, and demotivational posters. You sell to companies that might have several authorized
purchasers.

 Now suppose your application uses the following steps to add the cost of a new purchase to a
customer’s outstanding balance:

1. Get customer balance from database.

2. Add new amount to balance.

3. Save new balance in database.

 This seems straightforward until you think about what happens if two people make purchases at
almost the same time with a distributed application. Suppose a customer has an outstanding balance
of $100. One purchaser buys $50 worth of sticky notes while another purchaser is buying a $10
trash can labeled “suggestions.” Now suppose the application executes the two purchasers’ steps in
the order shown in Table 5-1 .

 TABLE 5-1: Offi ce Supply Purchasing Sequence

PURCHASER 1 PURCHASER 2

Get balance. ($100)

Get balance. ($100)

Add to balance. ($150)

Add to balance. ($110)

Save new balance. ($150)

Save new balance. ($110)

 In Table 5-1 , time increases downward so Purchaser 1 gets the account balance fi rst and then
Purchaser 2 gets the account balance.

 Next Purchaser 1 adds $50 to his balance to get $150, and then Purchaser 2 adds $10 to his balance
to get $110.

 Purchaser 1 then saves his new balance of $150 into the database. Finally Purchaser 2 saves his
balance of $110 into the database, writing over the $150-balance that Purchaser 1 just saved. In the
end, instead of holding a balance of $160 ($100 + $50 + $10), the database holds a balance of $110.

 In distributed computing, this is called a race condition . The two processes are racing to see which
one saves its balance fi rst. Whichever one saves its balance second “wins.” (Although you lose.)

 A distributed architecture can improve performance as long as you don’t run afoul of race
conditions and other potential problems.

 Mix and Match
 An application doesn’t need to stick with a single architecture. Different pieces of the application
might use different design approaches. For example, you might create a distributed service‐oriented

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

100 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

application. Some of the larger services might use a component‐based approach to break their code into
decoupled pieces. Other services might use a multitier approach to separate their features from the data
storage layer. (Combining different architectures can also sound impressive at cocktail parties. “Yes, we
decided to go with an event‐driven multitier approach using rule‐based distributed components.”)

CLASSYDRAW ARCHITECTURE

Suppose you want to pick an architecture for the ClassyDraw application described
in Chapter 4 . (Recall that this is a drawing program somewhat similar to MS Paint
except it lets you select and manipulate drawing objects.) One way to do that is to
think about each of the standard architectures and decide whether it would make
sense to use while building the program.

1. Monolithic —This is basically the default if none of the more elaborate archi-
tectures apply. We’ll come back to this one later.

2. Client/server, multitier —ClassyDraw stores drawings in fi les, not a database,
so client/server and multitier architectures aren’t needed. (You could store
drawings in a database if you wanted to, perhaps for an architectural fi rm
or some other use where there would be some benefi t. For a simple drawing
application, it would be overkill.)

3. Component‐based —You could think of different pieces of the application as
components providing services to each other. For example, you could think of
a “rectangle component” that draws a rectangle. For this simple application,
it’s probably just as easy to think of a Rectangle class that draws a rectangle,
so I’m not going to think of this as a component‐based approach.

4. Service‐oriented —This is even less applicable than the component‐based approach.
Spreading the application across multiple computers connected via web services
(or some other kind of service) wouldn’t help a simple drawing application.

5. Data‐centric —The user defi nes the drawings, so there’s no data around which
to organize the program. (Although a more specialized program, perhaps a
drafting program for an architectural fi rm or an aerospace design program,
might interact with data in a meaningful way.)

6. Event‐driven —The user interface will be event‐driven. For example, the user
selects a tool and then clicks and drags to create a new shape.

7. Rule‐based —There are no rules that the user must follow to make a drawing,
so this program isn’t rule‐based.

8. Distributed —This program doesn’t perform extensive calculations, so distrib-
uting pieces across multiple CPUs or cores probably wouldn’t help.

Because none of the more exotic architectures applied (such as multitier or service‐
oriented), this application can have a simple monolithic architecture with an event‐
driven user interface.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

What to Specify ❘ 101

 Reports
 Almost any nontrivial software project can use some kinds of reports. Business applications might
include reports that deal with customers (who’s buying, who has unpaid bills, where customers
live), products (inventory, pricing, what’s selling well), and users (which employees are selling a lot,
employee work schedules).

 Even relatively simple applications can sometimes benefi t from reports. For example, suppose you’re
writing a simple shareware game that users will download from the Internet and install on their
phones. The users won’t want reports (except perhaps a list of their high scores), but you may want to
add some reporting. You could make the game upload information such as where the users are, when
they use the game, how often they play, what parts of the game take a long time, and so forth. You
can then use that data to generate reports to help you refi ne the game and improve your marketing.

 AD HOC REPORTING

 A large application might have dozens or even hundreds of reports. Often
customers can give you lists of existing reports that they use now and that they
want in the new system. They may also think of some new reports that take
advantage of the new system’s features.

 However, as development progresses, customers inevitably think of more reports as
they learn more about the system. They’ll probably even think of extra reports after
you’ve completely fi nished development.

 Adding dozens of new reports throughout the development cycle can be a burden to
the developers. One way to reduce report proliferation is to forbid it. Just don’t allow
the customers to request new reports. Or you could allow new reports but require that
they go through some sort of approval process so you don’t get too many requests.

 Another approach is to allow the users to create their own reports. If the
application uses a SQL database, it’s not too hard to buy or build a reporting tool
that lets users type in queries and see the results. I’ve worked on projects where the
customers used this capability to design dozens of new reports without creating
extra work for the developers.

 If you use this technique, however, you may need to restrict access to it so the
users don’t see confi dential data. For example, a typical order entry clerk probably
shouldn’t be able to generate a list of employee salaries.

 Some SQL statements can also damage the database. For example, the SQL DROP
TABLE statement can remove a table from the database, destroying all its data.
Make sure the ad hoc reporting tool is only usable by trusted users or that it won’t
allow those kinds of dangerous commands.

 As is the case with high‐level user interface design, you don’t need to specify every detail for every
report here. Try to decide which reports you’ll need and leave the details for low‐level design and
implementation.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

102 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

Other Outputs
In addition to normal reports, you should consider other kinds of outputs that the application might
create. The application could generate printouts (of reports and other things), web pages, data fi les,
image fi les, audio (to speakers or to audio fi les), video, output to special devices (such as electronic
signs), e‐mail, or text messages (which is as easy as sending an e‐mail to the right address). It could
even send messages to pagers, if you can fi nd any that aren’t in museums yet.

TIP Text (or pager) messages are a good way to tell operators that something
is going wrong with the application. For example, if an order processing
application is stuck and jobs are piling up in a queue, the application can send a
message to a manager, who can then try to fi gure out what’s wrong.

Database
Database design is an important part of most applications. The fi rst part of database design is to
decide what kind of database the program will need. You need to specify whether the application
will store data in text fi les, XML fi les, a full‐fl edged relational database, or something more exotic
such as a temporal database or object store. Even a program that doesn’t use any database still needs
to store data, perhaps inside the program within arrays, lists, or some other data structure.

If you decide to use an external database (in other words, more than data that’s built into the code),
you should specify the database product that you will use. Many applications store their data
in relational databases such as Access, SQL Server, Oracle, or MySQL. (There are dozens if not
hundreds of others.)

If you use a relational database, you can sketch out the tables it contains and their relationships
during high‐level design. Later you can provide more details such as the specifi c fi elds in each table
and the fi elds that make up the keys linking the tables.

DEFINING CLASSES

Often the tables in the database correspond to classes that you need to build in the
code. At this point, it makes sense to write down any important classes you defi ne.
Those might include fairly obvious classes such as Employee, Customer , r Order , r

WorkAssignment , and Report .

You’ll have a chance to refi ne those classes and add others during low‐level design
and implementation. For example, you might create subclasses that add refi nement
to the basic high‐level classes. You could create subclasses of the Customer class
such as PreferredCustomer , r CorporateCustomer , and r ImpulseBuyer. r

Use good database design practices to ensure that the database is properly normalized. Database
design and normalization is too big a topic to cover in this book. (For an introduction to
database design, see my book Beginning Database Design Solutions , Wiley, 2008.) Although

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

What to Specify ❘ 103

I don’t have room to cover those topics in depth, I’ll say more about normalization in the
next chapter.

 Meanwhile there are three common database‐specifi c issues that you should address during high‐
level design: audit trails, user access, and database maintenance.

 Audit Trails
 An audit trail keeps track of each user who modifi es (and in some applications views) a specifi cl
record. Later, management can use the audit trails to see which employee gave a customer a 120‐
percent discount. Auditing can be as simple as creating a history table that records a user’s name,
a link to the record that was modifi ed, and the date when the change occurred. Some database
products can even create audit trails for you.

 A fancier version might store copies of the original data in each table when its data is modifi ed.
For example, suppose a user changes a customer’s billing data to show the customer paid in full.
Instead of updating the customer’s record, the program would mark the existing (unpaid) record as
outdated. It would then copy the old record, update it to show the customer’s new balance, and add
the date of the change and the user’s name. Some applications also provide space for the users to add
a note explaining why they gave the customer a $12,000-credit on the purchase of a box of cereal.

 Later, you can compare the customer’s records over time to build an audit trail that re‐creates the
exact sequence of changes made for that customer. (Of course, that means you need to add a way for
the application to display the audit trail, and that means more work.)

 NOTE Some businesses have rules or government regulations that require
them to delete old data including audit trails.

 Many applications don’t need auditing. If you write an online multiplayer rock‐paper‐scissors game,
you probably don’t need an extensive record of who picked paper in a match two months ago.
You also may not need to add auditing to programs written for internal company use, and other
programs that don’t involve money, confi dential records, or other data that might be tempting to
misuse. In cases like those, you can simplify the application by skipping audit trails.

 User Access
 Many applications also need to provide different levels of access to different kinds of data. For
example, a fulfi llment clerk (who throws porcelain dishes into a crate for shipping) probably doesn’t
need to see the customer’s billing information, and only managers need to see the other employees’
salary information.

 One way to handle user access is to build a table listing the users and the privileges they should be
given. The program can then disable or remove the buttons and menu items that a particular user
shouldn’t be allowed to use.

 Many databases can also restrict access to tables or even specifi c columns in tables. For example,
you might be able to allow all users to view the Name , Office , and PhoneNumber fi elds in the
Employees table without letting them see the Salary fi eld.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

104 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 Database Maintenance
 A database is like a hall closet: Over time it gets disorganized and full of random junk like string,
chipped vases, and unmatched socks. Every now and then, you need to reorganize so that you can
fi nd things effi ciently.

 If you use audit trails and the records require a lot of changes, the database will start to fi ll up with
old versions of records that have been modifi ed. Even if you don’t use audit trails, over time the
database can become cluttered with outdated records. You probably don’t need to keep the records
of a customer’s gum purchase three years ago.

 In that case, you may want to move some of the older data to long‐term storage to keep the main
database lean and responsive. Depending on the application, you may also need to design a way to
retrieve the old data if you decide you want it back later.

 You can move the older data into a data warehouse , a secondary database that holds older data for
analysis. In some applications, you may want to analyze the data and store modifi ed or aggregated
forms in the warehouse instead of keeping every outdated record.

 You may even want to discard the old data if you’re sure you’ll never need it again.

 Removing old data from a database can help keep it responsive, but a lot of changes to the data
can make the database’s indexes ineffi cient and that can hurt performance. For that reason, you
may need to periodically re‐index key tables or run database tuning software to restore peak
performance. In large, high‐reliability applications, you might need to perform these sorts of tasks
during off‐peak hours such as between midnight and 2 a.m.

 Finally, you should design a database backup and recovery scheme. In a low‐priority application,
that might involve copying a data fi le to a DVD every now and then. More typically, it means
copying the database every night and saving the copy for a few days or a week. For high‐reliability
systems, it may mean buying a special‐purpose database that automatically shadows every change
made to any database record on multiple computers. (One telephone company project I worked on
even required the computers to be in different locations so that they wouldn’t all fail if a computer
room was fl ooded or wiped out by a tornado.)

 These kinds of database maintenance activities don’t necessarily require programming, but they’re
all part of the price you pay for using big databases, so you need to plan for them.

 Confi guration Data
 I mentioned earlier that you can save yourself a lot of time if you let users defi ne their own ad hoc
queries. Similarly, you can reduce your workload if you provide confi guration screens so that users
can fi ne‐tune the application without making you write new code. Store parameters to algorithms,
key amounts, and important durations in the database or in confi guration fi les.

 For example, suppose your application generates late payment notices if a customer has owed at
least $50 for more than 30 days. If you make the values $50 and 30 days part of the confi guration,
you won’t need to change the code when the company decides to allow a 5‐day grace period and
start pestering customers only after 35 days.

 Make sure that only the right users can modify the parameters. In many applications, only
managers should change these values.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

UML ❘ 105

 Data Flows and States
 Many applications use data that fl ows among different processes.
For example, a customer order might start in an Order Creation
process, move to Order Assembly (where items are gathered for
shipping), and then go to Shipping (for actual shipment). Data
may fl ow from Shipping to a fi nal Billing process that sends an
invoice to the customer via e‐mail. Figure 5-5 shows one way
you might diagram this data fl ow.

 You can also think of a piece of data such as a customer order
as moving through a sequence of states. The states often
correspond to the processes in the related data fl ow. For this
example, a customer order might move through the states
Created, Assembled, Shipped, and Billed.

 Not all data fl ows and state transitions are as simple as this
one. Sometimes events can make the data take different paths
through the system. Figure 5-6 shows a state transition diagram
for a customer order. The rounded rectangles represent states.
Text next to the arrows indicates events that drive transitions.
For example, if the customer hasn’t paid an invoice 30 days
after the order enters the Billed state, the system sends a
second invoice to the customer and moves the order to the
late state.

 These kinds of diagrams help describe the system and the way processes interact with the data.

 Training
 Although it may not be time to start writing training materials, it’s never too early to think about
them. The details of the system will probably change a lot between high‐level design and fi nal
installation, but you can at least think about how you want training to work. You can decide
whether you want users to attend courses taught by instructors, read printed manuals, watch
instructional videos, or browse documentation online.

 Trainers may create content that discusses the application’s high‐level purpose, but you have to fi ll in
most of the details later as the project develops.

 UML

 As mentioned in Chapter 4 , “Requirement Gathering,” the Unifi ed Modeling Language (UML) isn’t
actually a single unifi ed language. Instead it defi nes several kinds of diagrams that you can use to
represent different pieces of the system.

 The Object Management Group (OMG, yes, as in “OMG how did they get such an
awesome acronym before anyone else got it?”) is an international not‐for‐profi t organization
that defi nes modeling standards including UML. (You can learn more about OMG and UML at
www.uml.org .)

Customer Create
Order

Assemble
Order

Ship
Order

Send
Invoice

 FIGURE 5-5: A data fl ow
diagram shows how data such as
a customer order fl ows through
various processes.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

http://www.uml.org

106 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

Customer pays

Customer pays

Customer pays

Customer revises
order

Customer
creates order Created

Assembled

Shipped

Billed

Paid Late

 Delinquent

Closed

If unpaid after 90 days,
write off and close
customer account

If unpaid after 60 days,
program sends e-mail
begging and pleading

Program e-mails
invoice

Fullfillment clerk
assembles

Mailroom ships

If unpaid after 30 days,
program sends second

invoice

FIGURE 5-6: A data fl ow diagram shows how data such as a customer
order fl ows through various processes.

UML 2.0 defi nes 13 diagram types divided into three categories (and one subcategory) as shown in
the following list:

➤ Diagram

➤ Structure Diagram

➤ Class Diagram

➤ Composite Structure Diagram

➤ Component Diagram

➤ Deployment Diagram

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

UML ❘ 107

➤ Object Diagram

➤ Package Diagram

➤ Profi le Diagram

➤ Behavior Diagram

➤ Activity Diagram

➤ Use Case Diagram

➤ State Machine Diagram

➤ Interaction Diagram

➤ Sequence Diagram

➤ Communication Diagram

➤ Interaction Overview Diagram

➤ Timing Diagram

 Many of these are rather complicated so I won’t describe them all in excruciating detail here. Instead
the following sections give overviews of the types of diagrams in each category and provide a bit
more detail about some of the most commonly used diagrams.

 Structure Diagrams
 A structure diagram describes things that will be in the system you are designing. For example,
the class diagram (one type of structure diagram) shows relationships among the classes that
will represent objects in the system such as inventory items, vehicles, expense reports, and coffee
requisition forms.

 OBJECTS AND CLASSES

 I’ll say a bit more about classes and class diagrams shortly, but briefl y a class
defi nes a type (or class) of items, and an object is an instance of the class. Oftent
classes and objects correspond closely to real‐world objects.

 For example, a program might defi ne a Student class to represent students. The class
would defi ne properties that all students share such as Name , Grade , and HomeRoom .

 A specifi c instance of the Student class would be an object that represents a
particular student, such as Rufus T. Firefl y. For that object, the Name property would
be set to “Rufus T. Firefl y,” Grade might be 12, and HomeRoom might be “11‐B.” m

 The following list summarizes UML’s structure diagrams:

➤ Class Diagram—Describes the classes that make up the system, their properties and methods,
and their relationships.

➤ Object Diagram—Focuses on a particular set of objects and their relationships at a specifi c time.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

108 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

➤ Component Diagram—Shows how components are combined to form larger parts of the
system.

➤ Composite Structure Diagram—Shows a class’s internal structure and the collaborations that
the class allows.

➤ Package Diagram—Describes relationships among the packages that make up a system. For
example, if one package in the system uses features provided by another package, then the
diagram would show the fi rst “importing” the second.

➤ Deployment Diagram—Describes the deployment of artifacts (fi les, scripts, executables, and
the like) on nodes (hardware devices or execution environments that can execute artifacts).

 The most basic of the structure diagrams is the class diagram. In a
class diagram, a class is represented by a rectangle. The class’s name
goes at the top, is centered, and is in bold. Two sections below the
name give the class’s properties and methods. (A method is a routined
that makes an object do something. For example, the Student class
might have a DoAssignment method that makes the Student object
work through a specifi c class assignment.) Figure 5-7 shows a simple
diagram for the Student class.

 Some people add annotations to class representations to give you more
detail. Most class diagrams include the data types of properties and
parameters passed into methods, as shown in Figure 5-7 . You can also add the symbols shown in
Table 5-2 to the left of a class member to show its visibility within the project.

 TABLE 5-2: Class Diagram Visibility Symbols

SYMBOL MEANING EXPLANATION

+ Public The member is visible to all code in the application.

− Private The member is visible only to code inside the class.

Protected The member is visible only to code inside the class and any
derived classes.

∼ Package The member is visible only to code inside the same package.

 Class diagrams also often show relationships among classes. Lines connect classes that are related
to each other. A variety of line styles, symbols, arrowheads, and annotations give more information
about the kinds of relationships.

 The simplest way to use relationships is to draw an arrow indicating the direction of the relationship
and label the arrow with the relationship’s name. For example, in a school registration application,
you might draw an arrow from the Student class to the Course class to indicate that a Student is
associated with the Course s that student is taking. You could label that arrow “is taking.”

 At the line’s endpoints, you can add symbols to indicate how many objects are involved in the
relationship. Table 5-3 shows symbols you can add to the ends of a relationship.

Student

Name: string
Grade: integer
HomeRoom: string

DoAssignment(title: string)

 FIGURE 5-7: A class diagram
describes the properties
and methods of classes.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

UML ❘ 109

 TABLE 5-3: Class Diagram Multiplicity Indicators

MEANING

1 Exactly 1

0..1 0 or 1

0..* Any number (0 or more)

* Any number (0 or more)

1..* 1 or more

 The class diagram in Figure 5-8 shows the “is taking” relationship between the Student and Course
classes. In that relationship, 1 Student object corresponds to 1 or more Course objects.

Student Course

Name: string
Grade: integer
HomeRoom: string

1 1..*is taking

DoAssignment(title: string)

Name: string
Room: string

EmailAssignment(title: string)

 The relationship in this class diagram indicates that 1 Student takes
1 or more Courses.

 Another important type of class diagram relationship is inheritance. In object‐oriented
programming, one class can inherit the properties and methods of another. For example, an honors
student is a type of student. To model that in an object‐oriented program, you could defi ne an
HonorsStudent class that inherits from the Student class. The HonorsStudent class automatically
gets any properties and methods defi ned by the Student class (Name , Grade , HomeRoom , and
DoAssignment). You can also add new properties and methods if you like. Perhaps you want to add
a GPA property to the A HonorsStudent class.

 In a class diagram, you indicate inheritance by using a hollow arrowhead pointing from the child class
to the parent class. Figure 5-9 shows that the HonorsStudent class inherits from the Student class.

 Class diagrams for complicated applications can become cluttered and hard to read if you put
everything in a single huge diagram. To reduce clutter, developers often draw multiple class
diagrams showing parts of the system. In particular, they often make separate diagrams to show
inheritance and other relationships.

 For information about more elaborate types of class diagrams, search the Internet in general or the
OMG website www.omg.org in particular.

 Behavior Diagrams
 UML defi nes three kinds of basic behavior diagrams : activity diagrams, use case diagrams, and
state machine diagrams. The following sections provide brief descriptions of these kinds of diagrams
and give a few simple examples.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

http://www.omg.org

110 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 Activity Diagrams
 An activity diagram represents work fl ows for activities. They include several kinds of symbols
connected with arrows to show the direction of the work fl ow. Table 5-4 summarizes the symbols.

 TABLE 5-4: Activity Diagram Symbols

REPRESENTS

Rounded rectangle An action or task

Diamond A decision

Thick bar The start or end of concurrent activities

Black circle The start

Circled black circle The end

 Figure 5-10 shows a simple activity diagram for baking cookies.

 The fi rst thick bar starts three parallel activities: Start oven, mix dry ingredients, and mix wet
ingredients. If you have assistant cookie chefs (perhaps your children, if you have any), those steps
can all proceed at the same time in parallel.

 When the three parallel activities all are done, the work fl ow resumes after the second thick bar. The
next step is to combine all the ingredients.

 A test then checks the batter’s consistency. If the batter is too sticky, you add more fl our and recheck
the consistency. You repeat that loop until the batter has the right consistency.

 When the batter is just right, you roll out the cookies, wait until the oven is ready (if it isn’t already),
and bake the cookies for eight minutes.

Student

HonorsStudent

Course

Name: string
Grade: integer
HomeRoom: string

1 1..*is taking

DoAssignment(title: string)

GPA: double

Name: string
Room: string

EmailAssignment(title: string)

 FIGURE 5-9: A class diagram indicates inheritance with a hollow arrowhead.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

UML ❘ 111

 After eight minutes, you check the cookies. If the cookies aren’t done, you bake them for one more
minute. You continue checking and baking for one more minute as long as the cookies are not done.

 When the cookies are done, you enter the stopping state indicated by the circled black circle.

 Use Case Diagram
 A use case diagram represents a user’s interaction with the system. Use case diagrams show stick fi gures
representing actors (someone or something that performs a task) connected to tasks represented by ellipses.

 To provide more detail, you can use arrows to join subtasks to tasks. Use the annotation
<<include>> to mean the task includes the subtask. (It can’t take place without the subtask.)

 If a subtask might occur only under some circumstances, connect it to the main task and add the
annotation <<extend>> . If you like, you can add a note indicating when the extension occurs.
(Usually both <<include>> and <<extend>> arrows are dashed.)

 Figure 5-11 shows a simple online shopping use case diagram. The customer actor performs the
“Search site for products” activity. If he fi nds something he likes, he also performs the “Buy
products” extension. To buy products, the customer must log in to the site, so the “Buy products”
activity includes the “Log on to site” activity.

Mix dry ingredients

Combine ingredients

Wait until oven is ready

Roll out cookies

Bake 8 minutes

Bake 1 minute
Cookies not done

Cookies done

Mix wet ingredientsStart oven

Add more flour
Batter too sticky

Batter okay

 FIGURE 5-10: An activity diagram is a bit like a fl owchart showing
how work fl ows.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

112 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 The website’s search engine also participates in the “Search site for products” activity. When the customer
starts a search, the engine performs the “Find matching products” activity. The “Search” activity cannot
work without the “Find” activity, so the “Find” activity is included in the “Search” activity.

 State Machine Diagram
 A state machine diagram shows the states through which an object passes in response to various
events. States are represented by rounded rectangles. Arrows indicate transitions from one state to
another. Sometimes annotations on the arrows indicate what causes a transition.

 A black circle represents the starting state and a circled black circle indicates the stopping state.

 Figure 5-12 shows a simple state machine diagram for a program that reads a fl oating point number
(as in –17.32) followed by the Enter key.

Shop online

<<include>>

<<include>>

<<extend>>

Search engine
Customer

Buy products

Log on to site

Search site for
products

Find matching
products

 FIGURE 5-11: A use case diagram shows actors and the tasks they perform
(possibly with subtasks and extensions).

Digit or decimal Digit after
decimal

Digit before
decimal

Digit

Enter

Enter

+ or -

Digit

Digit

Digit Decimal

 This state machine diagram represents reading a fl oating point
number.

 The program starts and can read a digit, +, or –. (If it reads any other character, the machine fails
and the program would need to take some action, such as displaying an error message.) If it reads a
+, or –, the machine moves to the state “Digit before decimal.”

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

UML ❘ 113

 From that state, the user must enter a digit, at which point the machine moves into state
“Digit or decimal.” The machine also reaches this state if the user initially enters a digit instead of
a +, or –.

 Now if the user enters another digit, the machine remains in the “Digit or decimal” state. When the
user enters a decimal point, it moves to the “Digit after decimal” state. If the user presses the Enter
key, the machine moves to its stopping state. (That happens if the user enters a whole number such
as 37.)

 The machine remains in the “Digit after decimal” state as long as the user types a digit. When the
user presses the Enter key, the machine moves to its stopping state.

 Interaction Diagrams
Interaction diagrams are a subset of activity diagrams. They include sequence diagrams,
communication diagrams, timing diagrams, and interaction overview diagrams. The following
sections provide brief descriptions of these kinds of diagrams and give a few simple examples.

 Sequence Diagram
 A sequence diagram shows how objects collaborate in a particular scenario. It represents the
collaboration as a sequence of messages.

 Objects participating in the collaboration are represented as rectangles or sometimes as stick fi gures
for actors. They are labeled with a name or class. If the label includes both a name and class, they
are separated by a colon.

 Below each of the participants is a vertical dashed line called a lifeline . The lifeline basically
represents the participant sitting there waiting for something to happen.

 An execution specifi cation (called an execution or informally an activation) represents a participant n
doing something. In the diagram, these are represented as gray or white rectangles drawn on top of
the lifeline. You can draw overlapping rectangles to represent overlapping executions.

 Labeled arrows with solid arrowheads represent synchronous messages. Arrows with open
arrowheads represent asynchronous messages. Finally, dashed arrows with open arrowheads
represent return messages sent in reply to a calling message.

 Figure 5-13 shows a customer, a clerk, and the Movie class interacting to print a ticket for a movie.
The customer walks up to the ticket window and requests the movie from the clerk. The clerk uses a
computer to ask the Movie class whether tickets are available for the desired show. The Movie class
responds.

 Notice that the Movie class’s response is asynchronous. The class fi res off a response and doesn’t
wait for any kind of reply. Instead it goes back to twiddling its electronic thumbs, waiting for some
other request.

 If the class’s response is false , the interaction ends. (This scenario covers only the customer
successfully buying a ticket.) If the response is true , control returns to the clerk, who uses the
computer to ask the Movie class to select a seat. This causes another execution to run on the Movie
class’s lifeline.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

114 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 The Movie class in turn asks the customer to pick a seat from those that are available. The customer
is still waiting for the initial request to fi nish, so this is an overlapping execution for the customer.

 After the customer picks a seat, the Movie class issues a ticket to the clerk. The clerk then prints the
ticket and hands it to the customer.

 The point of this diagram is to show the interactions that occur between the participants and
the order in which they occur. If you think the diagram is confusing, feel free to add some text
describing the process.

 Communication Diagram
 Like a sequence diagram, a communication diagram shows communication among objects during
some sort of collaboration. The difference is the sequence diagram focuses on the sequence
of messages, but the communication diagram focuses more on the objects involved in the
collaboration.

 The diagram uses lines to connect objects that collaborate during an interaction. Labeled arrows
indicate messages between objects. The messages are numbered that so you can follow the sequence
of messages.

Customer Clerk

request(movie)

seat

ticket

ticket

selectSeat(movie)

selectSeat(movie)

isAvailable(movie)

true

: Movie

FIGURE 5-13: A sequence diagram shows the timing of
messages between collaborating objects.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

UML ❘ 115

 Following is the sequence of messages in Figure 5-14 :

1: The customer asks the clerk for a movie ticket.

1.1: The clerk asks the Movie class if a seat is available.

1.2: The clerk asks the Movie class to select a seat.

1.2.1: The Movie class asks the user to pick a seat.

1.2.2: The Movie class sends the clerk a ticket for the selected seat.

1.3: The clerk prints the ticket and hands it to the customer.

 The exact timing of the messages and some of the details (such as return messages) are not
represented well in the communication diagram. Those details are better represented by a sequence
diagram.

 Timing Diagram
 A timing diagram shows one or more objects’ changes in state over time. A timing diagram looks
a lot like a sequence diagram turned sideways, so time increases from left to right. These diagrams
can be useful for giving a sense of how long different parts of a scenario will take.

 More elaborate versions of the timing diagram show multiple participants stacked above each other
with arrows showing how messages pass between the participants.

 Interaction Overview Diagram
 An interaction overview diagram is basically an activity diagram where the nodes can be frames
that contain other kinds of diagrams. Those nodes can contain sequence, communication, timing,
and other interaction overview diagrams. This lets you show more detail for nodes that represent
complicated tasks.

1 request(m
ovie)

1.3 ticket
1.2.2 ticket

1.1 isAvailable(movie)
1.2: selectSeat(movie)

Clerk

1.2.1 selectSeat(movie)Customer

Movie

 FIGURE 5-14: A communication diagram emphasizes the objects participating in a
collaboration.

 Figure 5-14 shows a communication diagram for the movie ticket buying-scenario that was shown
in Figure 5-13 .

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

116 ❘ CHAPTER 5 HIGH‐LEVEL DESIGN

 SUMMARY

 High‐level design sets the stage for later software development. It deals with the grand decisions
such as:

➤ What hardware platform will you use?

➤ What type of database will you use?

➤ What other systems will interact with this one?

➤ What reports can you make the users defi ne so you don’t have to do all the work?

 After you settle these and other high‐level questions, the stage is set for development. However,
you’re still not quite ready to start slapping together code to implement the features described in
the requirements. Before you start churning out code, you need to create low‐level designs to fl esh
out the classes, modules, interfaces, and other pieces of the application that you identifi ed during
high‐level design. The low‐level design will give you a detailed picture of exactly what code you need
to write so you can begin programming.

 The next chapter covers low‐level design. It explains how you can refi ne the database design to
ensure the database is robust and fl exible. It also describes the kinds of information you need to add
to the high‐level design before you can start putting 0s and 1s together to make the fi nal program.

EXERCISES

1. What’s the difference between a component‐based architecture and a service‐oriented
architecture?

2. Suppose you’re building a phone application that lets you play tic‐tac‐toe against a simple
computer opponent. It will display high scores stored on the phone, not in an external data-
base. Which architectures would be most appropriate and why?

3. Repeat question 2 for a chess program running on a desktop, laptop, or tablet computer.

4. Repeat question 3 assuming the chess program lets two users play against each other over an
Internet connection.

5. What kinds of reports would the game programs described in Exercises 2, 3, and 4 require?

6. What kind of database structure and maintenance should the ClassyDraw application use?

7. What kind of confi guration information should the ClassyDraw application use?

8. Draw a state machine diagram to let a program read fl oating point numbers in scientifi c
notation as in + 37 or –12.3e + 17 (which means –12.3 × 10+17). Allow both E and e for the
exponent symbol.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

Summary ❘ 117

▸ WHAT YOU LEARNED IN THIS CHAPTER
➤ High‐level design is the fi rst step in breaking an application into pieces that are small enough

to implement.

➤ Decoupling tasks allows different teams to work on them simultaneously.

➤ Some of the things you should specify in a high‐level design include:

➤ Security (operating system, application, data, network, and physical)

➤ Operating system (Windows, iOS, or Linux)

➤ Hardware platform (desktop, laptop, tablet, phone, or mainframe)

➤ Other hardware (networks, printers, programmable signs, pagers, audio, or video)

➤ User interface style (navigational techniques, menus, screens, or forms)

➤ Internal interfaces

➤ External interfaces

➤ Architecture (monolithic, client‐server, multitier, component‐based, service‐oriented,
data‐centric, event driven, rule‐based, or distributed)

➤ Reports (application usage, customer purchases, inventory, work schedules, produc-
tivity, or ad hoc)

➤ Other outputs (printouts, web pages, data fi les, images, audio, video, e‐mail, or text
messages)

➤ Database (database platform, major tables and their relationships, auditing, user
access, maintenance, backup, and data warehousing)

➤ Top‐level classes (Customer , Employee , and Order)

➤ Confi guration data (algorithm parameters, due dates, expiration dates, and
durations)

➤ Data fl ows

➤ Training

➤ UML diagrams lets you specify the objects in the system (including external agents such as
users and external systems) and how they interact.

➤ The main categories of UML diagrams are structure diagrams and behavior diagrams (which
includes the subcategory interaction diagrams).

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

Stephens, Rod. Beginning Software Engineering, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/senecac/detail.action?docID=1895174.
Created from senecac on 2022-09-01 14:32:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n

W
ile

y
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll
rig

ht
s

re
se

rv
ed

.

